• Title/Summary/Keyword: Constrained Quenching

Search Result 5, Processing Time 0.018 seconds

Residual stress formation in injection-molded samples under constrained quenching (가압 급냉하에서의 사출 성형품내의 잔류 응력 형성 해석)

  • Yoon, Kyunghwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.58-68
    • /
    • 1997
  • The residual stresses in injection-molded plastic parts can be divided into two, i.e., the flow-induced residual stress produced in flowing stage and the thermally-induced residual stress produced in cooling stage. Especially, the main source for the defect in the final parts, such as warpage, is known to be the thermally-induced stresses. For the freely quenched samples the structures of residual stresses and bire-fringence have been investigated by many researchers extensively. However, the boundary condition for free quenching was found to be improper to study actual injection molding process. In the present study a datailed structure of the residual stresses and birefringence produced under constrained quenching has been investigated experimentally. In constrained quenched samples a similar pattern but much less stress values than that for the freely quenched samples has been found in the case of the thickness of 1.0 mm. Howvere, in the case of the thickness of 4.0mm, totally different stress profile has been found experimentally. Suprisingly uniform birefringence throughout whole thickness has been found for all the cases of constrained quenching. Finally, to explain the mechanism to produce the final residual stresses and bire-fringence some preliminary numerical results including free volume theory have been introduced briefly.

  • PDF

A Study on the Prediction of Thermally-Induced Residual Stress and Birefringence in Quenched Polystyrene Plate Including Free Volume Theory (자유 체적이론을 고려한 급냉 폴리스티렌판에 발생하는 잔류응력과 복굴절 형성에 관한 연구)

  • Kim, Jong-Sun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.77-87
    • /
    • 2003
  • The residual stress and birefringence in injection-molded plastic parts can be divided into the flow-induced residual stress and birefringence produced in flowing stage, the thermally-induced residual stress and birefringence produced in cooling stage. However, the physics involved in the generation of the thermally-induced residual stress and birefringence still remains to be understood. Because polymer experiences viscoelastic history near the glass-transition temperature it is hard to model the entire process. Volume relaxation phenomenon was included to predict the final thermally-induced residual stress and birefringence in quenched plastic parts more accurately. The present study focused on comparing the predicted values far thermally-induced residual stress and birefringence with and without volume relaxation behavior (or free volume theory) under free and constrained quenching conditions. As a result, tile residual stress remained as a tensile stress at the center and as a compressible stress near the surface for the free quenching cases. In contract the residual stress remained as a compressible stress at the center and as a tensile stress near the surface fur the constrained quenching cases. The residual birefringence remained as minus values at the center and as plus values near the surface for the free quenching cases. Interestingly the residual birefringence showed minus values in entire zone for the constrained quenching cases. In the prediction of birefringence only the case including free volume theory showed the correct result for the distribution of birefringence in thickness direction.

The Distribution of Residual Stresses in Quenched Plastic Parts including Fee Volume Theory (자유체적이론을 고려한 플라스틱의 급냉시 잔류응력의 분포)

  • 김종선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.106-111
    • /
    • 2000
  • The residual stresses in molded plastic parts can be divided into the flow induced residual stresses produced in flowing stages and the thermally induced residual stresses produced in cooling state. Reducing residual stresses in the final parts is one of the goals in recent study. The present study focused on comparing the predicted values for thermal residual stresses in freely and constrained quenched plastic plates with and without free volume theory. As a result the final residual stresses showed the opposite pattern in thickness direction. furthermore by applying free volume theory the predicted residual stress at the center showed about 50% of the values without free volume theory for constrained quenched case.

  • PDF

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

Transformability and Phase Transformation Behaviors of Metastable Tetragonal Phase in 2Y-TZP Powder. (2Y-TZP 분말내 준안정 정방정상 입자의 전이도 및 상전이거동)

  • Kim, Hwan;Lee, Jong-Kook
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.320-329
    • /
    • 1992
  • In 2Y-TZP powders calcined at temperature range of 80$0^{\circ}C$0 to 150$0^{\circ}C$, the effect of stabilization and the transformability of tetragonal phase on the tetragonal to monoclinic transformation have been investigated. The transformability of tetragonal phase in calcined powders shows maximum at the calcination temperature of 130$0^{\circ}C$. This result is explained by a combined effect of the increase of particle size and of constrained force among the particles with increasing the calcination temperature. The amount of transformed monoclinic phase with calcination temperature after quenching in liquid nitrogen, stress induction and isothermal aging at 25$0^{\circ}C$is also explained by the transformability of tetragonal phase determined by the sum of particle size effect and constraint effect.

  • PDF