• Title/Summary/Keyword: Constrained Independent Component Analysis

Search Result 4, Processing Time 0.016 seconds

Constrained Spatiotemporal Independent Component Analysis and Its Application for fMRI Data Analysis

  • Rasheed, Tahir;Lee, Young-Koo;Lee, Sung-Young;Kim, Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.373-380
    • /
    • 2009
  • In general, Independent component analysis (ICA) is a statistical blind source separation technique, used either in spatial or temporal domain. The spatial or temporal ICAs are designed to extract maximally independent sources in respective domains. The underlying sources for spatiotemporal data (sequence of images) can not always be guaranteed to be independent, therefore spatial ICA extracts the maximally independent spatial sources, deteriorating the temporal sources and vice versa. For such data types, spatiotemporal ICA tries to create a balance by simultaneous optimization in both the domains. However, the spatiotemporal ICA suffers the problem of source ambiguity. Recently, constrained ICA (c-ICA) has been proposed which incorporates a priori information to extract the desired source. In this study, we have extended the c-ICA for better analysis of spatiotemporal data. The proposed algorithm, i.e., constrained spatiotemporal ICA (constrained st-ICA), tries to find the desired independent sources in spatial and temporal domains with no source ambiguity. The performance of the proposed algorithm is tested against the conventional spatial and temporal ICAs using simulated data. Furthermore, its performance for the real spatiotemporal data, functional magnetic resonance images (fMRI), is compared with the SPM (conventional fMRI data analysis tool). The functional maps obtained with the proposed algorithm reveal more activity as compared to SPM.

Constrained Independent Component Analysis Based Extraction and Mapping of the Brain Alpha Activity in EEG

  • Ahn, S.H.;Rasheed, T.;Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y..
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.355-363
    • /
    • 2008
  • In order to extract only the alpha activity related signals from EEG recordings, we have applied Constrained Independent Component Analysis (cICA), a new extension of ICA in which some a priori knowledge of the alpha activity is utilized to extract only desired components. Its extraction (or filtering) performance has been compared to that of the conventional band-pass filtering via the scalp alpha power maps and cortical source maps of the alpha activity. Our results demonstrate that the alpha power maps and cortical source maps from the cICA-extracted alpha signals reveal more focalized alpha generating regions of the brain than those from the band-pass filtered alpha EEG signals. Furthermore they match more closely the activated regions of the brain mapped using fMRI, validating our results. We believe that the cICA-based filtering approach of EEG signals is a more effective means of extracting a specific brain activity reflected in EEG signals that will result in more accurate source localization or imaging maps.

Brain Mapping Using Neuroimaging

  • Tae, Woo-Suk;Kang, Shin-Hyuk;Ham, Byung-Joo;Kim, Byung-Jo;Pyun, Sung-Bom
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.179-183
    • /
    • 2016
  • Mapping brain structural and functional connections through the whole brain is essential for understanding brain mechanisms and the physiological bases of brain diseases. Although region specific structural or functional deficits cause brain diseases, the changes of interregional connections could also be important factors of brain diseases. This review will introduce common neuroimaging modalities, including structural magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging, and other recent neuroimaging analyses methods, such as voxel-based morphometry, cortical thickness analysis, local gyrification index, and shape analysis for structural imaging. Tract-Based Spatial Statistics, TRActs Constrained by UnderLying Anatomy for diffusion MRI, and independent component analysis for fMRI also will also be introduced.

A TWO-STAGE SOURCE EXTRACTION ALGORITHM FOR TEMPORALLY CORRELATED SIGNALS BASED ON ICA-R

  • Zhang, Hongjuan;Shi, Zhenwei;Guo, Chonghui;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1149-1159
    • /
    • 2008
  • Blind source extraction (BSE) is a special class of blind source separation (BSS) methods, which only extracts one or a subset of the sources at a time. Based on the time delay of the desired signal, a simple but important extraction algorithm (simplified " BC algorithm")was presented by Barros and Cichocki. However, the performance of this method is not satisfying in some cases for which it only carries out the constrained minimization of the mean squared error. To overcome these drawbacks, ICA with reference (ICA-R) based approach, which considers the higher-order statistics of sources, is added as the second stage for further source extraction. Specifically, BC algorithm is exploited to roughly extract the desired signal. Then the extracted signal in the first stage, as the reference signal of ICA-R method, is further used to extract the desired sources as cleanly as possible. Simulations on synthetic data and real-world data show its validity and usefulness.

  • PDF