• Title/Summary/Keyword: Constitutive equation sensitivity analysis

Search Result 12, Processing Time 0.018 seconds

Finite Element Analysis with Viscoplastic Formulation in Open-Die RTP Process (개방형 RTP(Rapid Thermal Pressing)공정의 점소성 유한요소해석)

  • Son J. W.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.284-289
    • /
    • 2004
  • Since polymer materials at elevated temperatures are usually rate-sensitive, the analysis of RTP process requires considering the effect of the rate-dependent. The material behavior that exhibits rate-sensitivity is called visco-plastic. A two-dimensional visco-plastic finite element formulation which constitutive equation is based on the formulation proposed by Perzyna is presented. This Paper is purposed to calcuate pressure distribution on PMMA in compression process and to predict the relationship with defects after demolding process. This paper analyzes, both analytically and numerically, the pressure distributions on the surface of PMMA during open-die RTP process. In this research, PMMA is used to be simulated at $110^{\circ}C$ near the transition temperature.

  • PDF

NUMERICAL SIMULATION OF CONVEX AND CONCAVE TUBES WITH CONSIDERATION OF STRAIN RATE SENSITIVITY

  • Ye, B.W.;Oh, S.;Cho, Y.B.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.193-201
    • /
    • 2007
  • The present paper deals with the application of the explicit finite element code, PAM-CRASH, to simulate the crash behavior of steel thin-walled tubes with various cross-sections subjected to axial loading. An isotropic elastic, linear strain-hardening material model was used in the finite element analysis and the strain-rate sensitivity of mild steel was modeled by using the Cowper-Symonds constitutive equation with modified coefficients. The modified coefficients were applied in numerical collapse simulations of 11 types of thin-walled polygon tubes: 7 convex polygon tubes and 4 concave polygon tubes. The results show that the thin hexagonal tube and the thick octagonal tube showed relatively good performance within the convex polygon tubes. The crush strengths of the hexagonal and octagonal tubes increased by about 20% and 25% from the crush strength of the square tube, respectively. Among the concave tubes, the I-type tube showed the best performance. Its crush strength was about 50% higher than the crush strength of the square tube.