• Title/Summary/Keyword: Constitutive Model

Search Result 1,183, Processing Time 0.027 seconds

Total Polyphenol Contents and Antioxidant Activities of Methanol Extracts from Vegetables produced in Ullung Island (울릉도산 산채류 추출물의 총 폴리페놀 함량 및 항산화 활성)

  • Lee, Syng-Ook;Lee, Hyo-Jung;Yu, Mi-Hee;Im, Hyo-Gwon;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.233-240
    • /
    • 2005
  • To discover new functional materials using edible plants, antioxidant activities of methanol extracts from various parts of seven wild vegetables were investigated in vitro. Total polyphenol contents, determined by Folin-Denis method, varied from 16.74 to $130.22{\mu}g/mg$. Radical-scavenging activities of methanol extracts were examined using ${\alpha},\;{\alpha}-diphenyl-{\beta}-pirrylhydrazyl$ (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay. Inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate (FTC) method and on oxidative degradation of 2-deoxy-D-ribose in Fenton-type reaction system were dose-dependent. Athyrium acutipinulum Kodama (leaf and rood), Achyranthes japonica (Miq.) Nakai (seed), and Solidago virga-aurea var. gigantea Nakai (root) showed relatively high antioxidant activities in various systems.

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

Effect of Ischemic Preconditioning on the Oxygen Free Radical Production in the Post-ischemic Reperfused Heart

  • Park, Jong-Wan;Kim, Young-Hoon;Uhm, Chang-Sub;Bae, Jae-Moon;Park, Chan-Woong;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.321-330
    • /
    • 1994
  • The protective effect of 'ischemic preconditioning (PC)' on ischemia-reperfusion injury of heart has been reported in various animal species, but without known mechanisms in detail. In an attempt to investigate the cardioprotective mechanism of PC, we examined the effects of PC on the myocardial oxidative injuries and the oxygen free radical production in the ischemia-reperfusion model of isolated Langendorff preparations of rat hearts. PC was performed with three episodes of 5 min ischemia and 5 min reperfusion before the induction of prolonged ischemia (30 min)-reperfusion(20 min). PC prevented the depression of cardiac function (left ventricular pressure x heart rate) observed in the ischemic-reperfused heart, and reduced the release of lactate dehydrogenase during the reperfusion period. On electron microscopic pictures, myocardial ultrastructures were relatively well preserved in PC hearts as compared with non-PC ischemic-reperfused hearts. In PC hearts, lipid peroxidation of myocardial tissue as estimated from malondialdehyde production was markedly reduced. PC did not affect the activity of xanthine oxidase which is a major source of oxygen radicals in the ischemic rat hearts, but the myocardial content of hypoxanthine (a substrate for xanthine oxidase) was much lower in PC hearts. It is suggested from these results that PC brings about significant myocardial protection in ischemic-reperfused heart and this effect may be related to the suppression of oxygen free radical reactions.

  • PDF