• Title/Summary/Keyword: Constitutive Activation

Search Result 70, Processing Time 0.028 seconds

Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species

  • Jun, Semo;Kim, Seok Won;Kim, Byeol;Chang, In-Youb;Park, Seon-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • T In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.

Establishment and characterization of bortezomib-resistant U266 cell line: Constitutive activation of NF-κB-mediated cell signals and/or alterations of ubiquitylation-related genes reduce bortezomib-induced apoptosis

  • Park, Juwon;Bae, Eun-Kyung;Lee, Chansu;Choi, Jee-Hye;Jung, Woo June;Ahn, Kwang-Sung;Yoon, Sung-Soo
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.274-279
    • /
    • 2014
  • Bortezomib has been known as the most promising anti-cancer drug for multiple myeloma (MM). However, recent studies reported that not all MM patients respond to bortezomib. To overcome such a stumbling-block, studies are needed to clarify the mechanisms of bortezomib resistance. In this study, we established a bortezomib-resistant cell line (U266/velR), and explored its biological characteristics. The U266/velR showed reduced sensitivity to bortezomib, and also showed cross-resistance to the chemically unrelated drug thalidomide. U266/velR cells had a higher proportion of CD138 negative subpopulation, known as stem-like feature, compared to parental U266 cells. U266/velR showed relatively less inhibitory effect of prosurvival NF-${\kappa}B$ signaling by bortezomib. Further analysis of RNA microarray identified genes related to ubiquitination that were differentially regulated in U266/velR. Moreover, the expression level of CD52 in U266 cells was associated with bortezomib response. Our findings provide the basis for developing therapeutic strategies in bortezomib-resistant relapsed and refractory MM patients.

Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells

  • Yun, Hye Hyeon;Baek, Ji-Ye;Seo, Gwanwoo;Kim, Yong Sam;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.457-465
    • /
    • 2018
  • The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.

Establishment of Reporter Cell Lines that Monitor Activities of Hypoxia Inducible Factor-1, P53 and Nur77 for Assessment of Carcinogenicity (저산소유도인자 HIF-1, 암 억제인자 P53과 고아 핵수용체 Nur77의 발현을 지표로 하는 발암독성예측 세포주의 개발)

  • Hong, Il;Seo, Hee-Won;Lee, Min-Ho;Kim, Ji-Won;Chung, Jin-Ho;Lee, Byung-Hoon;Lee, Mi-Ock
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • Evaluation of potentials of chemicals to alter expression of genes that are involved in carcinogenesis may serve useful tools in toxicological research. In this investigation, we developed reporter cell lines that expressed luciferase in response to transactivation of hypoxia inducible factor-1, P53 tumor suppressor and Nur77 of which roles have been well established in cancer development and progression. Whereas these reporter cell lines displayed low constitutive backgrounds, the reporter activities were significantly enhanced in response to $desferriosamine/CoCl_2$, adriamycin or 6-mercaptopurine, which are hypoxia mimicking chemicals, P53 activator or Nur77 inducer, respectively. The activation of the reporter was time- and dose-dependent. Known tumor initiators and promoters, such as phorbol 12-myristate 13-acetate and phorbol 12, 13-dicaprinate induced the reporter activity at as low as 10nM in these stable cell lines. Further, known anti-tumor promoters, such as ascorbic acid and ${\beta}-carotene$ repressed the reporter activities. These results indicate that our stable reporter cell lines could serve as a useful system for rapid assessment of carcinogenicity of toxic chemicals.

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni;Kim, Sang Gon;Kang, Kyu Young;Kim, Ju-Gon;Park, Sang-Ryeol;Gupta, Ravi;Kim, Yong Hwan;Wang, Yiming;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.552-562
    • /
    • 2016
  • Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

L-ASCORBIC ACID AND ARSENIC TRIOXIDE SYNERGISTICALLY REPRESS CONSTITUTIVE ACTIVATION OF NF- $\textsc{k}$B AND COX-2 EXPRESSION IN HUMAN ACUTE PROMYELOCYTIC LEUKEMIA, HL-60

  • Han, Seong-Su;Lee, Sook-J.;Chung, Seung-Tae;Eom, Juno-H.;Surh, Young-Joon;Park, Hye-K.;Park, Mary-H.;Kim, Won-S.;Kim, Ki-Hyun;Park, Keun-Chil;Kim, Jhin-Gook;Yang, Jung-Hyun;Yoon, Sung-S;Neil H.Riordan;HughD.Riordan;BruceF.Kimler;Park, Chan-H.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.143-144
    • /
    • 2001
  • Eukaryotic nuclear transcription factor, NF-B and cyclooxygenase-2 (COX-2) has been implicated in pathogenesis of many human diseases including tumor and are known to be activated by various external stimuli. Recently, increasing evidences have supported that L-ascorbic acid (LAA) is selectively toxic to some types of tumors at pharmacological concentrations as a prooxidant, rather than antioxidant.(omitted)

  • PDF

Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium

  • Jong-Myeong Kim;Kwang Wook Min;You-Joung Kim;Ron Smits;Konrad Basler;Jin Woo Kim
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.441-450
    • /
    • 2023
  • β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.

Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry

  • Yoon Young Cho;Jeong Hill Park;Jung Hee Lee;Sungkwon Chung
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydiphenyl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.

Suppression of EGFR/STAT3 activity by lupeol contributes to the induction of the apoptosis of human non-small cell lung cancer cells

  • TAE‑RIN MIN;HYUN‑JI PARK;KI‑TAE HA;GYOO‑YONG CHI;YUNG‑HYUN CHOI;SHIN‑HYUNG PARK
    • International Journal of Oncology
    • /
    • v.55 no.1
    • /
    • pp.320-330
    • /
    • 2019
  • The aim of this study was to investigate the underlying mechanisms responsible for the anticancer effects of lupeol on human non-small cell lung cancer (NSCLC). MTT assay and Trypan blue exclusion assay were used to evaluate the cell viability. DAPI staining and flow cytometric analysis were used to detect apoptosis. Molecular docking and western blot analysis were performed to determine the target of lupeol. We found that lupeol suppressed the proliferation and colony formation of NSCLC cells in a dose-dependent manner. In addition, lupeol increased chromatin condensation, poly(ADP-ribose) polymerase (PARP) cleavage, sub-G1 cell populations, and the proportion of Annexin V-positive cells, indicating that lupeol triggered the apoptosis of NSCLC cells. Notably, lupeol inhibited the phosphorylation of epithelial growth factor receptor (EGFR). A docking experiment revealed that lupeol directly bound to the tyrosine kinase domain of EGFR. We observed that the signal transducer and activator of transcription 3 (STAT3), a downstream molecule of EGFR, was also dephosphorylated by lupeol. Lupeol suppressed the nuclear translocation and transcriptional activity of STAT3 and downregulated the expression of STAT3 target genes. The constitutive activation of STAT3 by STAT3 Y705D overexpression suppressed lupeol-induced apoptosis, demonstrating that the inhibition of STAT3 activity contributed to the induction of apoptosis. The anticancer effects of lupeol were consistently observed in EGFR tyrosine kinase inhibitor (TKI)-resistant H1975 cells (EGFR L858R/T790M). Taken together, the findings of this study suggest that lupeol may be used, not only for EGFR TKI-naïve NSCLC, but also for advanced NSCLC with acquired resistance to EGFR TKIs.

The Effect of Linarin on LPS-Induced Cytokine Production and Nitric Oxide Inhibition in Murine Macrophages Cell Line RAW264.7

  • Kim, Kyung-Jae;Han, Shin-Ha;Sung, Ki-Hyun;Yim, Dong-Sool;Lee, Sook-Kyeon;Lee, Chong-Kil;Ha, Nam-Ju
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.170-177
    • /
    • 2002
  • The herb, Chrysanthemum zawadskii var, latilobum commonly known as Gu-Jul-Cho in Korea, used in traditional medicine to treat pneumonia, bronchitis, cough, common cold, pharyngitis, bladder-related disorders, gastroenteric disorders, and hypertension. Linarin is the main active compound and the biological mechanisms of its activity are unclear. It is believed that effects of this herb may be exerted through the pluripotent effectors of linarin due to its ability to treat a variety of afflictions. In this study, the effects of linarin on the mouse macrophages cell line, RAW 264.7, were investigated. It was found that linarin could activate macrophages by producing cytokines. Monocytes and tissue macrophages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1 ) and the tumor necrosis factor (TNF). Recent studies have shown that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. $TNF-{\alpha}$ production by macrophages treated with linarin occured in a dose dependent manner However, IL-1 production was largely unaffected by this natural product. This study demonstrated the ability of linarin to activate macrophages both directly and indirectly. Linarin also affect both cytosine production and nitric oxide inhibition, in addition to the expression of some surface molecules. Nitric oxide (NO), derived from L-argin-ine, is produced by two forms(constitutive and inducible) of nitric oxide synthase (NOS). The NO produced in large amounts by inducible NOS is known to be responsible for the vasodilation and hypotension observed in septic shock. Linarin was found to inhibit NO production in the LPS-activated RAW 264.7 cells. Linarin may be a useful candidate as a new drug for treating endotoxemia and the inflammation accompanied by NO overproduction. The linarin-treated total Iymphocytes exhibited cytotoxicity in a dose dependent manner between $20{\;}{\mu}g/ml{\;}and{\;}40{\;}{\mu}g/ml$. These results suggest that linarin may function through macrophage activation.