• Title/Summary/Keyword: Constant-volume combustion chamber

Search Result 161, Processing Time 0.018 seconds

Quantitative Vapor Phase Exciplex Fluorescence Measurements at High Ambient Temperature and Pressure

  • Kim, Tongwoo;Jaal B. Ghandhi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.157-167
    • /
    • 2003
  • The exciplex fluorescence technique with the TMPD (tetamethyl-Ρ-phenylene-diamine) / naphthalene dopant system was applied in a combustion-type constant-volume spray chamber. A detailed set of calibration experiments has been performed in order to quantify the TMPD fluorescence signal. It has been demonstrated that the TMPD fluorescence intensity was directly proportional to concentration, was independent of the chamber pressure, and was not sensitive to quenching by either water vapor or carbon dioxide. Using a dual heated-jet experiment, the temperature dependence of TMPD fluorescence up to 1000 K was measured. The temperature field in the spray images was determined using a simple mixing model, and an iterative solution method was used to determine the concentration and temperature field including the additional effects of the laser sheet extinction. The integrated fuel vapor concentration compared favorably with the measured amount of injected fuel when all of the liquid fuel had evaporated.

A basic study on ignitor for lean burn (희박연소용 점화장치에 대한 기초연구)

  • Lee, Sang-Jun;Na, Seong-O;Lee, Jong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.36-48
    • /
    • 1997
  • In order to establish the ignition system for lean burn, the influence of the number of spark plug, spark times and spark intervals on discharge pattern of spark energy on ignitability and combustion characteristics were evaluated. It showed that, ignitability remarkably increased with the case of multiple spark ignition system than with the case of single spark and the lean limit extended fuel/air equivalence ratio by 0.1, the increase of magnitude and lasting time of capacity component and inductance component was multi spark discharge in a row.

An Experimental and Mathematical Study on the Effects of Ignition Energy and System on the Flame Kernel Development

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.829-838
    • /
    • 2002
  • A constant volume combustion chamber is used to investigate the flame kernel development of gasoline air mixtures under various ignition systems, ignition energies and spark plugs. Three kinds of ignition systems are designed and assembled, and the ignition energy is controlled by the variation of the dwell time. Several kinds of spark plugs are also tested. The velocity of flame propagation is measured by a laser deflection method, and the combustion pressure is analyzed by the heat release rate and the mass fraction burnt. The results represent that as the ignition energy is increased by enlarging either dwell time or spark plug gap, the heat release rate and the mass fraction burnt are increased. The electrodes materials and shapes influence the flame kernel development by changing he transfer efficiency of electrical energy to chemical energy. The diameter of electrodes also influences the heat release rate and the burnt mass fraction.

Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray (Dimethyl Ether(DME)의 증발과 거시적 분무 특성)

  • Yu, Jun;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

Effect of Solid Body rotating Swirl on Spray Structure (강체선회 유동이 분무 구조에 미치는 영향)

  • 이충훈;최규훈;노석홍;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.137-146
    • /
    • 1997
  • Spray characteristics of high pressure injectors for diesel engines have been experimentally studied with special emphasis on the effect of swirl. A constant volume chamber was rotated in order to generate a continuous swirl having the flow field of a solid body rotation, resulting in the linear dependance of the swirl number on the rotating speed of the chamber. Emulsified fuel is injected into the chamber and the developing process of fuel sprays is visualized. The fuel spray developing process in D.I. diesel engine was investigated by this liquid injection technique. The effect of swirl on the spray tip penetration is quantified through modelling. Results show that the spray tip penetration is qualitatively different for low and high pressure injections. For high pressure injection case, a good agreement is achieved between the experimental results and the modeling accounting the effect of swirl. For low pressure injection, a reasonable agreement is obtained. It is found that excessive swirl may cause adverse effect on spray dispersion during the initial combustion period since the spray can not be impinged on chamber wall.

  • PDF

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

A Study on the Combustion Characteristic of the Methanol Fuel in a Turbulence Mixture (유동분위기에서 메탄올의 연소특성에 관한 연구)

  • 이중순;이태원;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2022-2029
    • /
    • 1995
  • The experiment was performed by using the condenser discharge ignition device in a constant volume combustion chamber for high pressure, equivalent to the TDC of spark ignition engine, which makes the forced turbulent field possible. The conclusions obtained under various initial pressures, initial temperatures, and turbulent conditions of the methanol-air mixture are as follows : As initial pressure, initial temperature of the mixture, and the ignition energy increase, the inflammability limit expands, but the lean inflammability limit decreases as turbulence intensity increases. Combustion duration is shorter in the case of the lower initial pressure, the higher initial temperature, an equivalence ratio of 1.1-1.2, and even though turbulence intensity increases up to optimum value. Maximum combustion pressure increases in turbulent ambience under the same mixture condition, only in the case each optimum turbulence intensity exists under every condition. As the turbulence intensity increases .tau.$_{10}$ proportion increases while the .tau.$_{pr}$ proportion decreases....

The Effect of Mixture Component in a Gasoline Engine on Output (The Effect of Ignition Delay and Combustion Period) (가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 출력(出力)에 미치는 영향(影響) (점화지연(点火遲延) 및 연소(燃燒) 기간(期間)에 미치는 영향(影響)))

  • Song, J.I.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • The effect of mixture component makes a nelay time and a long total combustion period $\tau_{p\;max}$. The flame propagation delay $\tau_{df}$ was determined by the record of current ion. The pressure release delay $\tau_{dp}$ and $\tau_{p\;max}$ were determined by the indicated pressure diagram in constant volume of the combustion chamber. The results are as follows: 1) The ignition delay $\tau_t$ time takes the minimum value around $\Phi=1.15$. 2) $\tau_{df}$ and $\tau_t$ time increased according to the increases of the concentrated dilution gases, because the adiabatic flame temperature decreased due to the increases of the heat capacity. But dilution gases have little effect on flame nucleus formation delay 3) The relation between $\tau_t$ time and reciprocal laminar burning velocity is almost linear. 4) The increase of the propagation length is accompanied with increased ratio of the $\tau_{df},\;\tau_{dp},\;\tau_{t},\;\tau_{p\;max}$.

  • PDF

A Study on the Characteristics of Methane-Air Premixture Combustion and Combustion Radicals (II) (밀폐 연소실 내의 메탄-공기 예혼합기의 연소 및 라디칼 특성에 관한 연구(II))

  • Choe, Su-Jin;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.602-614
    • /
    • 1997
  • In order to evaluate the effects of equivalence ratio, initial pressure and temperature on the laminar flame propagation process, and combustion radicals characteristics, experimental approaches are carried out in methane-air premixture using a constant volume chamber. Local and average radical intensities were measured to determine the time and spatial correlations between each radicals; C $H^{*}$(431 nm), $C_{2}$$^{*}$ (517 nm) and O $H^{*}$(309 nm) . The results are showed that two kinds of equation were proposed for the cases of continuous flame and intermittent flame type to evaluate actual equivalence ratio using relative intensities with each radicals. Both equations were agreed with actual equivalence ratio within 10% errors range. And schlieren photo and CCD image were compared with flame sizes at equivalence ratio 1.0.o 1.0.

Spray Characteristics of Dimethyl Ether(DME) Fuel Compared to Various Diesel Fuels

  • Lee, Seang-Wock;Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • It is recognized that alternative fuel such as dimethyl ether (DME) has better combustion polluting characteristics than diesel fuel, even though the cetane number of DME is almost the same as that of diesel. Characteristics of DME spray were observed experimentally under various ambient conditions using a constant volume chamber and a common-rail injection system. N-dodecane and LPG fuel sprays were also observed under same conditions of DME spray. Using spray images from backlight scattering and Mie scattering, characteristics of fuel sprays such as penetration and spray volume were visualized and quantitatively measured. The measurements showed that the penetration of early period decreased remarkably, because evaporation of alternative fuels became prosperous by the influence of flash boiling phenomenon under the condition of the low temperature and pressure compared with n-dodecane. The penetration of DME and LPG spray received the influence of temperature more largely in comparison with low density, because the specific surface area increased by atomizing in high density.

  • PDF