• 제목/요약/키워드: Constant-rate Drying

Search Result 100, Processing Time 0.026 seconds

Thin Layer Drying Model of Sorghum

  • Kim, Hong-Sik;Kim, Oui-Woung;Kim, Hoon;Lee, Hyo-Jai;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Purpose: This study was performed to define the drying characteristics of sorghum by developing thin layer drying equations and evaluating various grain drying equations. Thin layer drying equations lay the foundation characteristics to establish the thick layer drying equations, which can be adopted to determine the design conditions for an agricultural dryer. Methods: The drying rate of sorghum was measured under three levels of drying temperature ($40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$) and relative humidity (30%, 40%, and 50%) to analyze the drying process and investigate the drying conditions. The drying experiment was performed until the weight of sorghum became constant. The experimental constants of four thin layer drying models were determined by developing a non-linear regression model along with the drying experiment results. Result: The half response time (moisture ratio = 0.5) of drying, which is an index of the drying rate, was increased as the drying temperature was high and relative humidity was low. When the drying temperature was $40^{\circ}C$ at a relative humidity (RH) of 50%, the maximum half response time of drying was 2.8 h. Contrastingly, the maximum half response time of drying was 1.2 h when the drying temperature was $60^{\circ}C$ at 30% RH. The coefficient of determination for the Lewis model, simplified diffusion model, Page model, and Thompson model was respectively 0.9976, 0.9977, 0.9340, and 0.9783. The Lewis model and the simplified diffusion model satisfied the drying conditions by showing the average coefficient of determination of the experimental constants and predicted values of the model as 0.9976 and Root Mean Square Error (RMSE) of 0.0236. Conclusion: The simplified diffusion model was the most suitable for every drying condition of drying temperature and relative humidity, and the model for the thin layer drying is expected to be useful to develop the thick layer drying model.

An Experimental Study for Dryer (건조기 고안 제작에 관한 연구)

  • 최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3677-3684
    • /
    • 1975
  • A newly devised dryer with heated air for the farm products, especially suited for high water content materials such as red pepper, Beer ground, each Vegetables, and Low water content materials such as Rough rice was tested for its thermal efficiency and drying mechanism, and the optimum conditions for each sample were established. In order to improve the present rural situation of drying farm products which entirely dependent upon natural solar radiation, a study upon an economic multi-parpose dryer was conducted. A series of drying tests were run first with red pepper which is one of the important cash crop in Korean farm. And successive series of tests were also run with such proaucts as garlic, sweet potatoes, green onion, radish, Beer ground and Rough rice. The results from the above experiment in drying system with heat dryer can be summarized as follows. 1. Drying duration could be shortened by the tempering effect in high water content crop such as red pepper and beer ground. 2. The color changes occured in around 20% water content in red pepper. The degree of color change was heavily affected by high temperature and short drying duration. 3. The drying condition of red pepper was most favourable at the temperature of 85$^{\circ}C$ in early stage and 80$^{\circ}C$ in middle stage and 75$^{\circ}C$ at the final stage, and with the air rate of 0.81㎥/sec and with sample amount of 200kg. 4. The drying condition of Rough rice(I.R.667) was most favourable at the templature of 40$^{\circ}C$ in early stage and 35$^{\circ}C$ in middle stage and final stage and with the air rate of 0.2㎥/sec and with sample amount of 75kg. 5. In order to prevent the color change of red pepper and to assure high efficiency in drying mechanism, it was necessary to lower the temperature as the time passes in drying process. 6. For vege tables, the drying rate were short in early stage and there was also tempering effect. However, for garlics, Constant drying rates through the early and final stages were observed and there were no tempering effects. 7. The drying condition or capability were as follows; Sample drying temp($^{\circ}C$) amount of material(kg) drying time(hr) Red pepper 85 200 9 Garlic 85 150 7 Sweet potato 85 200 6 Green Onion 85 200 4 Carrot 85 200 4 Radish 90 250 4 Rough rice(I.R.667) 35 75 4 Beer ground 90 320 3 Considering the above result of experiments, if this kind of dryers were distributed Korean farm and the optimun process were practiced in rural area, it would certainly help them improving the qualites of their product preventing their undue losses, and thus assuring an increase of Korean farm income and promotion of their living standards.

  • PDF

The Drying Characteristics of Apples at Various Drying Conditions (사과의 건조조건(乾燥條件)에 따른 건조특성(乾燥特性))

  • Jung, Shin-Kyo;Choi, Yong-Hee;Shon, Tae-Hwa;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 1986
  • This study was performed to examine the drying characteristics of apples at various drying conditions. Air velocity has no effect on the drying rate except the constant rate period. In this experiment the diffusion coefficients of moisture in the apple tissue were in the range of $1.1470-2.2148{\times}10cm^2/sec$. As a result of balance of heat and mass transfer during the falling rate period. an empirical equation based on Fick's law was obtained as follows; $log{\Delta}t\;=\;log\;t_o\;-\;D{\frac{{\pi}^2{\theta}}{4d.}}$ This equation can be used to calculate the temperature of apples during the falling rate period, provided the diffusion coefficients of apple are known. The experimental values of the internal moisture distribution during apple dehydration were nearly in accord with the theoretical values.

  • PDF

Predictive Thin Layer Drying Model for White and Black Beans

  • Kim, Hoon;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.190-198
    • /
    • 2017
  • Purpose: A thin-layer drying equation was developed to analyze the drying processes of soybeans (white and black beans) and investigate drying conditions by verifying the suitability of existing grain drying equations. Methods: The drying rates of domestic soybeans were measured in a drying experiment using air at a constant temperature and humidity. The drying rate of soybeans was measured at two temperatures, 50 and $60^{\circ}C$, and three relative humidities, 30, 40 and 50%. Experimental constants were determined for the selected thin layer drying models (Lewis, Page, Thompson, and moisture diffusion models), which are widely used for predicting the moisture contents of grains, and the suitability of these models was compared. The suitability of each of the four drying equations was verified using their predicted values for white beans as well as the determination coefficient ($R^2$) and the root mean square error (RMSE) of the experiment results. Results: It was found that the Thompson model was the most suitable for white beans with a $R^2$ of 0.97 or greater and RMSE of 0.0508 or less. The Thompson model was also found to be the most suitable for black beans, with a $R^2$ of 0.97 or greater and an RMSE of 0.0308 or less. Conclusions: The Thompson model was the most appropriate prediction drying model for white and black beans. Empirical constants for the Thompson model were developed in accordance with the conditions of drying temperature and relative humidity.

Development of a Prototype Continuous Flow Dryer using For Infrared Ray and Heated -air for White Ginseng (열풍과 원적외선 겸용 연속식 백삼 건조기의 개발)

  • 박승제;김성민;김명호;김철수;이종호
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2000
  • This study was performed to develop a prototype continuous flow ginseng dryer with which better product quality and lower drying energy consumption could be achieved compared with conventional ginseng dryers. A dryer having both far infrared ray (IR) and heated-air as the drying energy sources was designed and fabricated . Dryer performance was studied by examining energy efficiencies and dryer performance evaluation indices (DPEI) during the drying tests of medium-sized four year ginseng roots with IR radiating plate temperature and drying air temperature in the range of 80-12$0^{\circ}C$ and 22-5$0^{\circ}C$, respectively. The DPEI of IR /heated -air combined drying was 1/3 of that of the conventional heated-air drying when ginseng were dried to the same final moisture ratio. When ginsengs were dried for 12 hours in the prototype IR/heated-air combination dryer, a linear relationship was found to exist between final moisture ratio and ginseng temperature. As the drying progressed, drying air temperature inside the dryer was nearly constant but ginseng temperature was drastically increased during the first two hours and gradually increased thereafter until the end of drying. With the prototype Ir/heated-air combination dryer, the drying rate changed little but the energy efficiency increased proportionally when the amount of ginseng to be dried increased. Drying capacity, energy efficiency, and DPEI of the prototype IR/heated-air combination ginseng dryer were estimated to 1.500 roots, 65% and 3.800kJ/kg-water , respectively.

  • PDF

Drying Characteristics of Minced Fish on Drum Dryers (잘게 저민 생선의 드럼건조기에 의한 건조특성)

  • Kim, Kong-Hwan;Piyarat, Warcharin
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.351-356
    • /
    • 1986
  • The effects of drum spacing, steam pressure and drum speed on drying rate of minced fish flesh on both single and double drum dryers were studied. Starch additions in the form of tapioca flour up to 2.5% have been found satisfactory for aiding in sheet formation at the doctor blade. When the retention time was adjusted to maintain a constant product moisture, the highest production rate was obtained at the smallest drum spacing and the highest steam pressure within the limits of experimental conditions considered. The operating conditions suitable for producing the flakes with 5% moisture were: 100 kPa (steam pressure), 0.1 mm (drum spacing) and 3 rpm (drum speed). The production rate and overall heat transfer coefficient under these conditions were $12.1\;kg/m^2$hr and 950 $W\;/m^2K$ respectively. The drying data were fitted well to the conventional drying model, namely $MR\;=\;A\;\exp\;(-k{\theta})$, resulting in the various drying constants depending the operating conditions.

  • PDF

Properties of CLC using Silica to Suppress Cracking due to Drying Shrinkage (건조수축에 따른 균열 억제를 위한 규사 혼입 CLC의 특성)

  • Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.125-126
    • /
    • 2021
  • In order to improve the housing culture, construction changes for the utilization of diverse and multifunctional spaces are appearing in response to the increasing diverse needs of consumers. Cellular Light-weight Concrete (CLC) is being developed for use in fire-resistant heat-insulating walls and non-bearing walls. However, manufacturing non-uniformity has become a problem as a drawback due to the use of foamed bubbles and normal temperature curing, and additional research is required. Therefore, in order to suppress cracks due to drying shrinkage, silica sand is mixed with CLC to try to understand its characteristics. In the experiment, the compressive strength from 7 to 28 days of age was measured via a constant temperature and humidity chamber, and the drying shrinkage was analyzed according to each condition using a strain gauge. The compressive strength of matrix tends to decrease as the substitution rate of silica sand increases. This is judged by the result derived from the fact that the specific surface area of silica sand is smaller than that of slag. Based on KS F 2701 (ALC block), the compressive strength of 0.6 products is 4.9 MPa or more as a guide, so the maximum replacement rate of silica sand that satisfies this can be seen at 60%. Looking at the change in drying shrinkage for just 7 days, the shrinkage due to temperature change and drying is 0.7 mm, and the possibility of cracking due to shrinkage can be seen, and it seems that continuous improvement and supplementation are needed in the future.

  • PDF

Dehydration of Solid Food Material Immersed in Fluidized-Bed (유동층(流動層)에 의한 고체식품(固體食品)의 건조(乾燥))

  • Yu, Ju-Hyun;Lee, Shin-Young;Pyun, Yu-Ryang;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.398-403
    • /
    • 1978
  • Squid was dried on the fluidized-bed in the drying chamber filled with solid particles which were also fluidized with hot-air, and effects of the fluidized particles, the squid's height from the grid and the drying temperature on the drying rate and quality of the squid were observed The mechanism of moisture transfer during the falling rate period was also derived. 1. Sodium chloride was found to be the most suitable fluidized particles and at an air velocity of 3.8 m/sec, optimal fluidization state of this particle was obtained. 2. Uniform profiles of temperature were obtained at a point 4 cm above the grid and the location of squid on the fluidized-bed observed to be suitable when it was 4 cm above the grid. 3. At an air velocity of 3.8 m/sec and when the location height of the squid on the fluidized-bed was 4 cm, the optimal temperature for the drying time which is required to reduce the moisture from 80.8% to 18-22% was 8.5 hours. 4. Drying data followed the empirical equation of unsteady state diffusion $log\;(\frac{W-We}{Wc-We})=-m{\theta}$ in the region of the moisture contents measured and the drying constant (m) was calculated as $0.32hr^{-1}$. These results suggested that the migration of moisture during the falling rate period is due to a diffusion type mechanism. 5. The short constant rate period was observed in the early stage and thereafter, drying was controlled by the falling rate period, and the time ratio of the fluidized bed drying to the through circulation drying for reducing the squid's moisture contents to the same level at the same drying temperature was 1 : 1.4 6. Comparisons of fluidized-bed dried squid and sun dried squid in sale showed that there was no significant change in qualities such as external appearance and hydrogen ion concentration of dry product.

  • PDF

Improvement of Solubility and Dissolution of Ketoconazole by Inclusion with Cyclodextrin (시클로덱스트린과의 포접에 의한 케토코나졸의 용해성 및 용출 증가)

  • Park, Gee-Bae;Ann, Hong-Jik;Chang, Young-Soo;Seo, Bo-Youn;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • Inclusion complexes of ketoconazole (KT) with ${\alpha}-$, ${\beta}-cyclodextrin$ (CD) and dimethyl-${\beta}-cyclodextrin$ $(DM{\beta}CD)$ in a molar ratio of 1:2 were prepared by freeze-drying and solvent evaporation methods. The interactions of KT with ${\alpha}-CD$, ${\beta}-CD$ and $DM{\beta}CD$ in aqueous solution and in solid state were investigated by solubility study, infrared (lR) spectroscopy and differential scanning calorimetry (DSC). The stability constant of $KT-DM{\beta}CD$ inclusion complex (lC) was found to be the largest among three inclusion complexes. Clear differences in IR spectra and DSC curves were observed between inclusion complexes and physical mixtures (PM) of KT-CDs. It was also shown by IR spectra and DSC curves that solvent evaporation method might be. superior to the freeze-drying method in preparing the inclusion complexes of KT-CDs. The dissolution rate of KT was markedly increased by inclusion complex formation with CDs in the buffer solution at pH 4.0 and pH 6.8. The mean dissolution time (MDT,min), which represents the rapidity of dissolution, was in the order of $KT-DM{\beta}CD$ IC (3.20) < $KT-{\beta}-CD$ IC (4.36) < $KT-{\alpha}-CD$ IC (6.99) < $KT-{\alpha}-CD$ PM (17.46)< $KT-{\beta}-CD$ PM (19.36) < $KT-{\beta}-CD$ PM (28.53). The dissolution rates of KT-CD ICsprepared by solvent evaporation method were faster than those of KT-CD ICs prepared by freeze-drying method.

  • PDF

Studies on Food Preservation by Controlling Water Activity III. Quality Changes of Fish Meat during Drying and Storage (식품보장과 수분활성에 관한 연구 3. 어육의 건조 및 저장중의 품질)

  • HAN Bong-Ho;LEE Jong-Gab;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.181-189
    • /
    • 1983
  • A study on the qualify changes of fish meat during drying and storage has been carried out with filefish meat. Filefish meat was dried in a forced air dryer at 40 and $55\%$ for 20 hours with an air velocity of 0.4 m/sec under different conditions of relative air humidities in the range of 10 to $50\%$. The dried fish meat was stored at $30^{\circ}C$ in chambers with constant relative humidities controlled by the use of conditioned air stream passing through the saturated salt solutions. The qualify of filefish meat was evaluated with the brown color densities developed by lipid oxidation and Maillard reaction. Changes of viable cell count during drying and storage were also discussed. The predominant reaction for the brown color developed during the study period was the lipid oxidation. The lipid oxidation rate during drying at constant temperature was appreciably affected by water activities at the drying surfaces of filefish meat during the falling drying rate period. The lipid oxidation rate was the slowest under the condition of the relative air humidity of around $30\%$. In samples stored at water activity of 0.33, the lipid oxidation rate was retarded remarkably in comparison with the samples with lower or higher water activities. The addition of $1\%$ table salt, $1.5\%$ D-sorbitol and $6\%$ sucrose slightly lowered the water activity with the slowest lipid oxidation rate. Such additives resulted the increase of the water soluble brown color densities, which seemed due to the increase of mobility of the water soluble substances by the result of the increase of equilibrium water content. Microflora of the samples immediately after drying consisted of ca. $30\%$ of coccus types, ca. $65\%$ of rod types and ca. $5\%$ of molds and yeasts. During the storage of the samples with a water activity of 0.76, the ratio of the coccus types to the total microflora was increased remarkably while that of the Gram negative non-spore rod types was decreased. The ratios of the Gram positive rod types, molds and yeasts during the storage were nearly constant.

  • PDF