• 제목/요약/키워드: Constant-pressure model

검색결과 410건 처리시간 0.027초

Delayed Operation Characteristics of Power Shuttle According to Hydraulic Oil Temperature in the Hydraulic Circuit of Agricultural Tractor

  • Park, Yoon-Na;Kim, Dae-Cheol;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • 제40권2호
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: During the start-up period, the response time of a hydraulic system increases in the winter because of the increased oil viscosity caused by the cold weather. The problems of delayed tractor starting and excessive wear of the clutch disk occur for these reasons. Therefore, this study develops an analysis model using the commercial hydraulic analysis program AMESim to examine the characteristics of delays in power shuttle starting at different oil temperatures. Methods: In the experiment, a tractor was stationary on a flat surface with the engine running at a constant speed of 1,080 rpm. The forward lever was then pressed to activate the power shuttle at three different oil temperatures, and the pressure changes were measured. The pressure on the forward clutch control valve was measured by a pressure gauge installed on the hydraulic line supplied to the transmission from the main valve. An analysis model was also developed and verified with actual tests. Results: The trend of the simulated pressures of the power shuttle is similar to that of the measured pressures, and a constant modulation period was observed in both the simulation and test results. However, the difference found between the simulation and test results was the initial pressure required to overcome the initial force of the clutch spring. Conclusions: This study also examines the characteristics of the delayed startup of the power shuttle at different oil temperatures through simulations.

CT 영상 기반 집속 초음파 시뮬레이션 모델의 불균질 물성과 균질 물성에 따른 모델 분석 결과 비교 (Comparison of Analysis Results According to Heterogeneous or Homogeneous Model for CT-based Focused Ultrasound Simulation)

  • 서현;이은희
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.369-374
    • /
    • 2022
  • Purpose: Focused ultrasound is an emerging technology for treating the brain locally in a noninvasive manner. In this study, we have investigated the influence of skull properties on simulating transcranial pressure field. Methods: A 3D computational model of transcranial focused ultrasound was constructed using female and male CT data to solve for intracranial pressure. For heterogeneous model, the acoustic properties were calculated from CT Hounsfield units based on a porosity. The homogeneous model assigned constant acoustic properties for the single-layered skull. Results: A computational model was validated against empirical data. The homogeneous models were then compared with the heterogeneous model, resulted in 10.87% and 7.19% differences in peak pressure for female and male models respectively. For the focal volume, homogeneous model demonstrated more than 94% overlap compared with the heterogeneous model. Conclusion: Homogeneous model can be constructed using MR images that are commonly used for the segmentation of the skull. We propose the possibility of the homogeneous model for the simulating transcranial pressure field owing to comparable focal volume between homogeneous model and heterogeneous model.

타원방정식에 의한 벽면 부근의 난류열유속 모형화 (Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation)

  • 신종근;안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.

솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석 (The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model)

  • 강상욱;김창진;이대희;김흥섭
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

암의 비대칭적 성장, 혈관생성 및 혈류역학에 대한 수치적 연구 (Numerical Research about Asymmetric Growth of Cancer, Angiogenesis and Hemodynamics)

  • 김유석;심은보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2951-2954
    • /
    • 2007
  • Tumor hemodynamics in vascular state is numerically simulated using pressure node solution. The tumor angiogenesis pattern in our previous study is used for the geometry of vessel networks. For tumor angiogenesis, the equation that governed angiogenesis comprises a tumor angiogenesis factor (TAF) conservation equation in time and space, which is solved numerically using the Galerkin finite element method. A stochastic process model is used to simulate vessel formation and vessel. In this study, we use a two-dimensional model with planar vessel structure. Hemodynamics in vessel is assumed as incompressible steady flow with Newtonian fluid properties. In parent vessel, arterial pressure is assigned as a boundary condition whereas a constant terminal pressure is specified in tumor inside. Kirchhoff's law is applied to each pressure node to simulate the pressure distribution in vessel networks. Transient pressure distribution along with angiogenesis pattern is presented to investigate the effect of tumor growth in tumor hemodynamics.

  • PDF

Real- Time Estimation of the Ventricular Relaxation Time Constant

  • Chun Honggu;Kim Hee Chan;Sohn Daewon
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.87-93
    • /
    • 2005
  • A new method for real-time estimating left ventricular relaxation time constant (T) from the left ventricular (LV) pressure waveform, based on the isovolumic relaxation model, is proposed. The presented method uses a recursive least squares (RLS) algorithm to accomplish real-time estimation. A new criterion to detect the end-point of the isovolumic relaxation period (IRP) for the estimation of T is also introduced, which is based on the pattern analysis of mean square errors between the original and reconstructed pressure waveforms. We have verified the performance of the new method in over 4,600 beats obtained from 70 patients. The results demonstrate that the proposed method provides more stable and reliable estimation of τ than the conventional 'off-line' methods.

진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석 (System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner)

  • 박창환;박경현;장경식
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험 (A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade)

  • 임선;임승환;정예찬;지수정;남문호
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권3호
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계 (Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control)

  • 오성권;조세희;이승주
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.