• Title/Summary/Keyword: Constant torque

Search Result 417, Processing Time 0.026 seconds

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

Aeroacoustics Analysis and Noise Reduction of Dual Type Combined Fan using Lattice-Boltzmann Method (Lattice-Boltzmann Method를 이용한 이중구조팬의 공력소음 해석 및 저감)

  • Kim, Wootaek;Ryu, Minhyung;Kim, Jinwook;Ho, Sunghwan;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.381-390
    • /
    • 2016
  • In this study, aeroacoustic characteristics of combined fan are investigated and noise was reduced by applying Serrated Trailing Edge which is known as the method to reduce fan noises. Unsteady CFD (Computational Fluid Dynamics) analysis was carried out using Lattice Boltzmann Method(LBM) to figure out the combined fan's aeroacoustics and experimental results was used to verify simulation results. Results show that different BPFs are generated at the each inner fan and outer fan on the different frequency while Blade Passing Frequency(BPF) of general fans is constant on the entire frequency range. Boundary vortex and vortex shedding are suppressed or dispersed by applying the Serrated Trailing Edge to the inner fan. Furthermore, broadband noise and fan's torque are reduced.

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.

Study of Servo Controller for Improving Position Accuracy of 3D Terrestrial Laser Scanner (지상용 3차원 레이저 스캐너의 측정 위치 정확도 향상을 위한 서보 제어기의 연구)

  • Yu, Jong-Wook;Jeong, Joong-Yeon;Kim, Tae-Hyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.187-194
    • /
    • 2009
  • This study is to improve position accuracy by selecting proper a servo motor and applying FOC(Field Oriented Control) on developing a 3D terrestrial laser scanner. A 3D terrestrial laser scanner under developing has range of scanning of azimuth 360$^\circ$and elevation 270$^\circ$. It is implemented by precise controlling of a azimuth motor and a elevation motor. In the consequence of study, we have known that position accuracy of the motor can be able to be improved with constant torque of the motor by using FOC(Field Oriented Control). The control technic of the motor is possible to apply a 3D terrestrial laser scanner as well as a robotic total station.

Development of Core Technologies of Multi-tasking Machine Tools for Machining Highly Precision Large Parts (고정밀 대형 부품가공용 복합가공기 원천기술 개발)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Kim, Soo-Tae;An, Ho-Sang;Choi, Hag-Bong;Hong, Jong-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • In this study, three types of large scale multi-tasking machine tools together with core technologies involved have been developed and introduced; a multi-tasking machine tool for large scale marine engine crankshafts, a multi-tasking vertical lathe for windmill parts, and a large scale 5-axis machine tool of gantry type. Several special purpose devices has been necessarily developed for the purpose of handling and machining big and heavy workpieces accurately, such as PTD (Pin Turning Device) with revolving ring spindle for machining eccentric crankshaft pins, hydrostatic rotary table and steady rest for supporting and resting heavy workpieces, and 2-axis automatic swiveling head for high-quality free surface machining. Core technologies have been also developed and adopted on their detail design stage; 1) structural design optimization with FEM structural analysis, 2) theoretical hydrostatic analysis for the PTD and rotary table bearings, 3) box-in-box type cross-rail and octagonal ram design to secure machine rigidity and accuracy, 4) constant spindle rpm control against gravitational torque due to unbalanced workpiece.

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.

Time Dependent Reduction of Clamping Forces of High Strength Bolt F13T (시간에 따른 F13T 고장력 볼트의 체결력 감소)

  • Jo, Jae Byung;Seong, Taek-Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.291-297
    • /
    • 2009
  • Relaxation of high strength bolts was investigated. Block type and splice type specimens were fabricated with different types of bolts and different clamping lengths. Bolts were tightened to the specified torque. Clamping forces were measured through strain gauges installed on the shafts of bolts, while specimens were kept in a constant temperature and humidity. In all cases, ratio of clamping force reduction is less than 10%. Test results of different types of specimens and bolts and different clamping lengths were compared each other by using a simple model, which is suggested in this study for the estimation of bolt relaxation. The suggested model shows reasonably good agreements with test results for all cases. No difference is found between F13T and F10T bolts, but Dacro coated bolts shows higher relaxation than black bolts by approx. 30%. And also the comparison of test results shows that ratios of bolt relaxation become larger as clamping lengths of bolt shorter and the number of faying surfaces greater.

Analysis of load data for developing a self-propelled underground crop harvester during potato harvesting

  • Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Wan Soo, Kim;Ryu Gap, Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.845-855
    • /
    • 2022
  • The purpose of this study is to develop a self-propelled underground crop harvester and its performance was evaluated by measuring the load during actual potato harvesting operations. This study was conducted at a constant working speed of 1 km·h-1. A load measurement system was installed to measure the actual load and the required working power was analyzed. A hydraulic pressure sensor was also installed to measure the hydraulic pressure. The required hydraulic power was calculated using the hydraulic pressure and flow rate. The results showed that the engine speed, torque, and power during harvesting operation were in the range of 845 - 1,423 rpm, 95 - 228 Nm, and 9 - 31 kW, respectively. Traction power, excluding the hydraulic pump of the tractor and power take-off (PTO) output, was in the range of 9 - 28 kW, and it was confirmed that it occupies a ratio of 16.2 to 50% of the engine rated output. The engine can supply the minimum required traction power to move the vehicle. This means that the engine used in this study could be down-sized to be suitable for an underground crop harvester. In this study, the gear stages of the tractor were not considered. This research thus shows the possibility of developing a self-propelled underground crop harvester.

Comparison of screw-in effect of three NiTi file systems used by undergraduates (학생들이 사용한 세 종류 NiTi file systems의 screw-in effect 비교)

  • Oh, Seung-Hei;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.477-484
    • /
    • 2006
  • The purposes of this study were to compare the apical terminus width of simulated curved root canal prepared with three NiTi file systems used by undergraduates for evaluation the effects of flute angle and pitch or radial land on reducing screw-in effect and to determine more safe NiTi file system for inexperienced operators. Fifty inexperienced undergraduate students prepared 150 simulated curved root canals in resin blocks with three NiTi file systems ; ProFile$^{(R)}$, Hero Shaper$^{(R)}$, K3$^{TM}$. The electric motor set at a speed of 300 rpm and torque of 30 in a 16 : 1 reduction handpiece was used. The simulated root canal was prepared to ISO #25 sizes with each file system. The scanned images of pre- and post-instrumented canal of resin block were superimposed. To evaluate the screw-in effect of three NiTi file systems, apical terminus width of root canal was measured from superimposed images and statistical analysis was performed. There were significant differences in three NiTi flle systems. ProFile$^{(R)}$ had significantly smaller width than Hero Shaper$^{(R)}$ and K3$^{TM}$"" (P < 0.05), but no significant difference was observed between K3$^{TM}$ and Hero Shaper$^{(R)}$. Under the condition of this study, active file system (Hero SHaper$^{(R)}$, K3$^{TM}$) with variable pitch and helical angle had more screw-in effect than passive file system (ProFile$^{(R)}$) with constant pitch and helical angle. It seems that the radial lands play more important role in reducing screw-in effect.