• Title/Summary/Keyword: Constant pressure system

Search Result 572, Processing Time 0.026 seconds

ITO Thin Film Deposition on Polycarbonate Substrate using In-Line DC Magnetron Sputtering

  • Ahn, Min-Hyung;Li, Zhao-Hui;Choi, Kyung-Min;Im, Seung-Hyeok;Jung, Kyung-Seo;Cho, Eou-Sik;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1542-1545
    • /
    • 2009
  • For the application of flexible substrate to future display and new transparent devices, indium tin oxide (ITO) thin film was formed on polycarbonate(PC) substrate at room temperature by in-line sputter system. During the ITO sputtering, Ar and $O_2$ reaction gas were fixed at a constant value and the process pressure was varied from 3 to 7 mtorr. From the electrical and the optical properties of sputtered ITO films, the sheet resistances of as-deposited ITO films varied with a different pressure and the optical transmittances of the ITO films at visible wavelength were maintained above 85%. The results are considered to be due to the saturation of $O_2$ atoms from reaction in ITO film.

  • PDF

A study on spray characteristics of the triplet impinging stream type injector for liquid rocket (액체 로켓용 충돌형 Triplet 인젝터의 미립화 특성에 관한 연구)

  • Park, Sung-Young;Kim, Seon-Jin;Park, Seung-Woon;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1005-1014
    • /
    • 1996
  • An experimental investigation has been carried out to examine the influence of injector design variables and operating conditions on the resultant drop size for triplet impinging streams injectors. The variables studied in this investigation are pressure drop, impinging angle, orifice length to diameter ratio, and impinging point distance. Droplet-size data are obtained using water as the propellant simulant by Malvern Particle Analyzer System. Drop size decreases with increasing impinging angle and pressure drop while other injector parameters remain constant at the same point. But it is found that there is no noticeable droplet-size change which results from change in orifice length to diameter ratio or impinging point distance within the investigated range.

Propagation Characteristics of the Impulse Wave Discharged from the Inclined Exit of a Pipe (관의 경사출구로부터 방출되는 펄스파의 전파특성)

  • Lee, D.H.;Lee, M.H.;Kweon, Y.H.;Kim, H.D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.943-949
    • /
    • 2002
  • The propagation of the impulse wave discharged from the Inclined exit of a pipe is investigated through shock tube experiment and numerical computations. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident shock wave Mach number between 1.1 and 1.4. In the shock tube experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. Computations using the two-dimensional. unsteady, compressible, Euler equations are carried out to represent the experimented impulse waves. Computed Schlieren images predict the experimented impulse waves with a good accuracy. The results obtained show that for the radial direction the peak pressure of the impulse wave discharged depends upon the Inclined angle of the exit of the pipe. but for the axial direction it is almost constant regardless of the inclined angle of the pipe exit.

Experiments on the Noise Source Identification from a Moving Vehicle (주행하는 자동차 외부 소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.911-915
    • /
    • 2004
  • Recently, several experimental techniques for identifying the noise sources distributed over a moving vehicle are being developed and used in order to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car moving at constant speed. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The sound pressure are measured with an spiral array system composed of 26 microphones and a pair of photo sensors are used to measure the. vehicle speed. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured pressure signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

  • PDF

The Starting Behaviour of a Supersonic Ejector Equipped with a Converging-Diverging Diffuser (축소 팽창 디퓨저가 장착된 초음속 이젝터의 시동 특성)

  • Park GeunHong;Kim SeHoon;Jin JungKun;Kwon SeJin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.70-77
    • /
    • 2005
  • An axisymmetric supersonic ejector equipped with a converging-diverging diffuser was built and pressure at various locations along the ejector-diffuser system was recorded with emphasis on the supersonic starting of the secondary flow. In order to find the effects of the opening size of the secondary flow, a number of openings were used with a constant primary pressure. Supersonic starting was possible only for d/D, the ratio of the opening diameter and the diffuser throat diameter, less than 0.306. for larger values of d/D, the ejection begins at subsonic secondary flow condition. With the closure of the opening, the primary flow brings the normal shock downstream of the converging-diverging diffuser And the starting of the ejector continues even after the closure was removed.

A Gas Phase Kinetic Study on the Thermal Decomposition of $ClCH_2CH_2CH_2Br$

  • Kim, Sung-Hoon;Choo, Kwang-Yul;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.262-269
    • /
    • 1989
  • The gas phase thermal decomposition of 1-bromo-3-chloropropane in the presence of radical inhibitor was studied by using the conventional static system. The mechanism of unimolecular elimination channel is shown below. [...] In this scheme, the total molecular dissociation rate constant, ($k_1\;+\;k_2$), for the decomposition of $BrCH_2CH_2CH_2Cl$ was determined by pyrolyzing the $BrCH_2CH_2CH_2Cl$ in the temperature range of $380-420^{\circ}C$ and in the pressure range of 10∼100 torr. To obtain $k_3\;and\;k_4,\;and\;to\;obtain\;k_1\;and\;k_2$ independently, the thermal decompositions of allyl chloride and allyl bromide were also studied. The Arrhenius parameters for each step are as follows; $log\;A_{\infty}\;=\;14.20(sec^{-1}),\;E_a$ = 56.10(kcal/mol) for reaction path 1; $log\;A_{\infty}\;=\;12.54(sec^{-1}),\;E_a$ = 49.75(kcal/mol) for reaction path 2; $log\;A_{\infty}\;=\;13.41(sec^{-1}),\;E_a$ = 50.04(kcal/mol) for reaction path 3; $log\;A_{\infty}\;=\;12.43(sec^{-1}),\;E_a$ = 52.78(kcal/mol) for reaction path 4; Finally, the experimentally observed pressure dependence of the rate constants in each step is compared with the theoretically predicted values that are obtained by the RRKM calculations.

A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine (라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Lim, Choon-Mee
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

Heating Performance Evaluation of the VRF Heat Pump System with Refrigerant Heating Cycle for the Extreme Cold Region (냉매 가열식 대용량 VRF 히트펌프 사이클 설계를 통한 극한랭지 난방 성능 평가)

  • Lee, Sang-Hun;Choi, Song;Kim, Byeng-Soon;Lee, Jae-Keun;Lee, Kang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.571-579
    • /
    • 2011
  • Heat pump systems for commercial building with variable refrigerant flow(VRF) are expanding a market due to high energy efficiency, lower maintenance cost and easy installation comparing with the conventional heat pump with the constant refrigerant flow. In general, heat pump systems degrade the energy efficiency in the extremely low temperature regions. In this study, VRF heat pump system with refrigerant heating is experimentally investigated to overcome the low heating performance in the extremely low temperature regions. VRF heat pump system with refrigerant heating is found out the sufficient heating performance in the -25 degree temperature condition comparing with the conventional heat pump system and is obtained more than 2,500 kPa high pressure in the evaporator at low temperature.

A new base plate system using deformed reinforcing bars for concrete filled tubular column

  • Park, Yong-Myung;Hwang, Won-Sup;Yoon, Tae-Yang;Hwang, Min-Oh
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.375-394
    • /
    • 2005
  • An experimental study was conducted to develop a new base plate anchorage system for concrete filled tubular column under an axial load and a moment. The column was connected to a concrete foundation using ordinary deformed reinforcing bars that are installed at the inside and outside of the column. In order to investigate the moment resisting capacity of the system, horizontal cyclic loads are applied until the ultimate condition is reached with the axial load held constant. To derive a design method for moment resisting capacity, the reinforced concrete section approach was investigated with the assumption of strain compatibility. The results by this approach agreeded well with those of experiments when the bearing pressure of confined concrete and tangent modulus of steel bars are assumed appropriately. Also, it was found that the column interaction curve can be used to predict the yield strength of the base plate system.

The experimental study for hemodynamic changes in the heart-lung preparatio by autoperfusion (자가관류법에 의한 체외심폐의 혈역학적 변동에 관한 실험적 연구)

  • 한승세
    • Journal of Chest Surgery
    • /
    • v.22 no.2
    • /
    • pp.179-190
    • /
    • 1989
  • The experimental study for extracorporeal preservation of the heart-lung preparation by autoperfusion system was performed in 10 dogs. Under intravenous Pentothal endotracheal anesthesia bilateral thoracotomies were performed. A 24F cannula connected to a plastic reservoir bag located 100 cm above the level of the heart was introduced into the aortic arch. Left subclavian, innominate artery, and descending aorta were ligated and divided. Both vena cavae were ligated and divided after the bag was half filled with blood. A 24F catheter inserted into right atrium and connected to the plastic bag in order to keep constant the preload. The thoracic trachea was intubated and the lungs were ventilated. The heart-lung preparations were removed en bloc and floated in a $34^{\circ}C$ bath of Hartmann solution. The preparations were observed for from 2 hours to 8 hours, with the average of 5.2 hours. Hemodynamic and hematologic variables were measured during preharvest and autoperfusion. The pH revealed severe respiratory alkalosis due to very low $PaCO_2$ during autoperfusion ; $PaO_2$ remained constant for 130-140 mmHg; $A-aDO_2$ increased markedly. The static inspiratory pressure [SIP] at late autoperfusion [6hr] increased significantly as compared with at early autoperfusion [2hr]. There was no difference between white blood cell counts from right atrium and those of left atrium. Heart rates remained constant for 110-120/min; cardiac outputs maintained to approximately 0.6L/min; mean aortic pressures, 75 mmHg; mean pulmonary arterial pressures, 15-18 mmHg; mean right atrial pressures, 9-13 mmHg; mean left atrial pressures, 12 mmHg lower than those of right atrium. Serum Na maintained with normal range during autoperfusion; K increased significantly; Ca decreased progressively. Hemoglobin and hematocrit decreased significantly during autoperfusion. The study demonstrated that stable hemodynamics could be maintained throughout the experiment and the preparation of the lung seemed to be inadequate, especially after 3-4 hours, such as high $A-aDO_2$, increased SIP, and scattered atelectasis and edema in their gross appearances.

  • PDF