• 제목/요약/키워드: Constant power

검색결과 2,851건 처리시간 0.03초

Single-Inductor, Multiple-Input-Single-Output Converter Based Energy Mixer for Power Packet Distribution System

  • Reza, C.M.F.S.;Lu, Dylan Dah-Chuan;Qin, Ling;Qi, Jian
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1479-1488
    • /
    • 2018
  • Power packet (PP) distribution system distributes power to different loads that share the same distribution cable in a packetized form. When compared with conventional power systems, a PP distribution system (PPDS) can reduce standby power, eliminate Point-of-Load (PoL) power conversion, and intelligently control the load demand from the source side. Due to the absence of PoL conversion, when multiple power sources at different voltage levels and conditioning requirements jointly send power to various loads at different voltage ratings, the generated voltage has an irregular shape. A large filter at each of the load sides is required to reduce such a large voltage ripple. In this paper, a single-inductor, multiple-input-single-output converter structure based multiple-energy-source mixer is proposed. It combines PP generation, maximum power point tracking (MPPT) of renewable energy sources (RESs) and filtering at the source side. To demonstrate the possible renewable energy integration, a PV panel is used as a power source together with other constant voltage sources. The PV power is approximately tracked using the constant voltage method and it is used for each of the PP generations. The proposed PP distribution system is experimentally verified and it is shown that a conventional PI controller is sufficient for stable system operation.

An Analytical Solution for Voltage Stability Studies Incorporating Wind Power

  • Lin, Yu-Zhang;Shi, Li-Bao;Yao, Liang-Zhong;Ni, Yi-Xin;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.865-876
    • /
    • 2015
  • Voltage stability is one of the most critical security issues which has not yet been well resolved to date. In this paper, an analytical method called PQ plane analysis with consideration of the reactive power capability of wind turbine generator and the wake effect of wind farm is proposed for voltage stability study. Two voltage stability indices based on the proposed PQ plane analysis method incorporating the uncertainties of load-increasing direction and wind generation are designed and implemented. Cases studies are conducted to investigate the impacts of wind power incorporation with different control modes. Simulation results demonstrate that the constant voltage control based on reactive power capability significantly enhances voltage stability in comparison of the conventional constant power factor control. Some meaningful conclusions are obtained.

A Buck-Boost Type Charger with a Switched Capacitor Circuit

  • Wu, Jinn-Chang;Jou, Hurng-Liahng;Tsai, Jie-Hao
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, a buck-boost type battery charger is developed for charging battery set with a lower voltage. This battery charger is configured by a rectifier circuit, an integrated boost/buck power converter and a switched capacitors circuit. A boost power converter and a buck power converter sharing a common power electronic switch are integrated to form the integrated boost/buck power converter. By controlling the common power electronic switch, the battery charger performs a hybrid constant-current/constant-voltage charging method and gets a high input power factor. Accordingly, both the power circuit and the control circuit of the developed battery charger are simplified. The switched capacitors circuit is applied to be the output of the boost converter and the input of the buck converter. The switched capacitors circuit can change its voltage according to the utility voltage so as to reduce the step-up voltage gain of the boost converter when the utility voltage is small. Hence, the power efficiency of a buck-boost type battery charger can be improved. Moreover, the step-down voltage gain of the buck power converter is reduced to increase the controllable range of the duty ratio for the common power electronic switch. A prototype is developed and tested to verify the performance of the proposed battery charger.

Mixed Hydrogen Gas Generator용 전력변환장치 개발 (Development of Mixed Hydrogen Gas Generator Power Conversion System)

  • 정장근;문상필;조길제;김창일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.88-92
    • /
    • 2007
  • In this paper, the basic experiment, electrolytic cell design and basic manufacturing have been made to interpret the characteristics of Hydrogen-Oxygen-Gas-Generator. As for the detailed matters, the data research on basic technology on Hydrogen-Oxygen-Gas and analysis on characteristics of Hydrogen-Oxygen-Gas from basic experiment. Also the experiment of characteristics and comparative evaluation between constant current source using IGBT converter from existing method and constant current source using new phase shift PWM control method converter. As results when it has injected constant DC current, we has compared Gas quantities by variable ripple frequencies using phase shift PWM control method converter. Therefore, in linear region, it has not different Gas quantities by constant DC current and by phase shift PWM control method converter. Also, it has increased Gas quantities wilder linear region when put ripple frequency at saturation region. Through, Gas quantities and input power, it has acquired higher input power per Gas quantities at put pulse curren. Therefore, when designing converter or inverter for electrolysis, which has ripple current.

  • PDF

전차선 전압제약조건을 고려한 AT 급전계통 해석 (Analysis of AT Feeding Systems considering the Voltage Constraint Conditions of the Catenary.)

  • 김백;정광우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.27-33
    • /
    • 2005
  • Constant load model is generally used for an electric train to perform the static analysis of AT feeding systems. In this model, the train will be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. However there must be some voltage constraints on the catenary in actual operations. These constraints are established for the reason of protecting the feeding facilities from excessive rise of regenerative braking voltage or guaranteeing the minimum traction power of train. In normal operating situation, the pantagraph voltage of the train should be maintained within these limits. Keeping these facts in minds, we suggest new methods of analyzing AT feeding systems using the constant power models with the conditions of voltage constraints. The simulation results from a sample system using the proposed method illustrate both the states of system variables and the supply-demand relation of power among the trains and the systems very clearly, so it is believed that the proposed method yields more accurate results than conventional methods do. The proposed methods are believed to contribute to the assessment of TCR-TSC for compensating reactive powers too.

  • PDF

팬타그래프 전압제약조건을 고려한 AT급전계통 해석 (Analysis Of AT Feeding Systems Considering The Voltage Constraint Conditions Of The Pantagraph)

  • 문영현;김백
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.652-656
    • /
    • 2006
  • Constant load model is widely used for an electric train to perform the static analysis of AT (Auto Transformer) feeding systems. In this model, the train will be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. However there must be some constraints imposed on the pantagraph voltage in actual operations. These constraints are established for the reason of protecting the feeding facilities from excessive rise of regenerative braking voltage or guaranteeing the minimum traction power of train. In normal operating situation, the pantagraph voltage of the train should be maintained within these limits. Keeping these facts in minds, we suggest new methods or analyzing AT feeding systems using the constant power models with the conditions of voltage constraints. The simulation results from a sample system using the proposed method illustrate both the states of system variables and the supply-demand relation of power among the trains and the systems very clearly, so it is believed that the proposed method yields more accurate results than conventional methods do. The proposed methods are believed to contribute to the assessment of TCR-TSC for compensating reactive powers too.

멱함수 네트워크 특성을 이용한 랜덤확산형 웜의 동적 제어 (Dynamic Control of Random Constant Spreading Worm Using the Power-Law Network Characteristic)

  • 박두순;노병규
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.333-341
    • /
    • 2006
  • 최근의 웜은 CPU자원, 네트워크 대역폭등 주어진 자원을 최대한 소모하여 네트워크 전체 가용성을 심각히 저해하는 랜덤확산형(Random Constant Spreading) 웜이 점차 늘어나고 추세이다. 본 논문에서는 이러한 웜의 화산을 동적으로 억제하기 위하여 선호적 성장 특성을 가지는 멱함수 네트워크를 분석한다. 그리고 이러한 네트워크에서 공통적으로 나타나는 전달노드의 깊이분포 특성을 이용하여 랜덤확산형 웜을 동적으로 제어하는 모델을 제안하고 시뮬레이션을 통하여 각 노드의 부하가 최소화되면서 월 확산이 효과적으로 제어됨을 검증한다.

  • PDF

차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법 (Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed)

  • 이상훈;이동규;최평;박대진
    • 대한임베디드공학회논문지
    • /
    • 제15권5호
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

Comprehensive Coordinated Control Strategy of Virtual Synchronous Generators under Unbalanced Power Grid

  • Wang, Shuhuan;Han, Li;Chen, Kai
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1554-1565
    • /
    • 2019
  • When grid voltage is unbalanced, the grid-connected output current and power of Virtual Synchronous Generators (VSGs) are distorted and quadratic. In order to improve the power quality of a grid connected to a VSG when the grid voltage is unbalanced, a comprehensive coordinated control strategy is proposed. The strategy uses the positive sequence current reference command obtained by a VSG in the balanced current control mode to establish a unified negative sequence current reference command analytical expression for the three objectives of current balance, active power constant and reactive power constant. In addition, based on the relative value of each target's volatility, a comprehensive wave function expression is established. By deriving the comprehensive wave function, the corresponding negative sequence current reference value is obtained. Therefore, the VSG can achieve the minimum comprehensive fluctuation under the premise that the three targets meet the requirements of grid connection, and the output power quality is improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

돌입전류 제한용 $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO계 NTC 써미스터에서 ZnO/$Mn_3$$O_4$비에 따른 전기적 특성 (Electrical Properties as the ratio of ZnO/$Mn_3$$O_4$ of NTC Thermistor with $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO system for Inrush Current Limited)

  • 윤중락;김지균;권정렬;이현용;이석원
    • 한국전기전자재료학회논문지
    • /
    • 제13권6호
    • /
    • pp.472-477
    • /
    • 2000
  • Oxides of the form Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO present properties that make them useful as power NTC thermistor for current limited. Electrical properties of Mn$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO power NTC thermistor such as I-V characteristics tim constant activation energy and heat dissipation coefficient measured as a function of temperature and composition. In Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO system with the 5wt% addition of Co$_{3}$/O$_{4}$ it can be seen that resistivity and B-constant were increased as the ratio of ZnO/Mn$_{3}$/O$_{4}$ was increased. Heat dissipation constant, I-V characteristics and time constant showed similar behaviour compared with those of conventional thermistors. In particular resistance change ratio ($\Delta$R) the important factor for reliability varied within $\pm$5% indicating the compositions of these products could be available for power thermistor.

  • PDF