• Title/Summary/Keyword: Constant Volume Combustion

Search Result 230, Processing Time 0.029 seconds

Spray Penetrations of Dimethyl Ether (DME) and Diesel for the Variation of Injection Rate (분사율 변화에 따른 Dimethyl Ether (DME)와 디젤의 분무도달거리)

  • Choi, Wook;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.16-22
    • /
    • 2004
  • Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for a compression ignition engine. The major advantage of DME-fuelled engine is a great potential for soot-free combustion without sacrificing an inherent high thermal efficiency of diesel engine, despite a necessity for modification of the conventional fuel injection system. An experimental study on DME and conventional diesel sprays was conducted by employing a common-rail type fuel injection system with a 5-holes sac type nozzle, including a constant volume vessel pressurized with nitrogen gas. The injection rates of DME and diesel fuel were recorded with the Bosch type injection rate meter. The injection delay of DME was shorter than that of diesel fuel. The measured injection rates of DME and diesel fuel were correlated with spray penetrations. The prediction method of spray penetration was established using the injection rates, which was verified with the Dent's penetration model and found to agree well for DME case.

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

A Study on Analysis of the Hydrogen-Oxygen Gas Generator Using Pulse Power Supply (펄스전원에 의한 수산화가스 발생기에 관한 연구)

  • 이정민;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.377-385
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electricity for the Hydrogen-Oxygen gas generator, Firstly chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated through Faraday's laws of electrolysis. After that, pulse power supply is designed for basic experiment which could be applied to the analysis of Hydrogen-Oxygen gas generator. In the basis of above steps, comparison and analysis of Hydrogen-Oxygen gas generator was conducted as variable frequency using pulse Power supply.

  • PDF

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Estimate Minimum Amount of Methane for Explosion in a Confined Space (밀폐공간에서 메탄 폭발사고의 최소 가스누출량 예측)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2017
  • Leaking of natural gas, which is mostly methane, in a confined living space creates flammable atmosphere and gives rise to explosion accident. The minimum amount of leaked methane for explosion is highly dependent on the degree of mixing in the confined space. This paper proposes a method for estimating minimum amount of flammable gas for explosion by using Gaussian distribution explosion model(GDEM) and experimental explosion data. The explosion pressure in the confined space can be estimated by assuming the Gaussian distribution of flammable gas along the height of an enclosure and estimating the maximum amount of gas within flammable limits, combustion of the estimated gas with constant volume and adiabatic or isothermal mixing in the confined space. The predicted minimum gas amount for an explosion is tied to explosion pressure that results in a given building damage level. The result shows that very small amount of methane leaking in the confined space may results in a serious gas explosion accident. This result could be applied not only to setting the leak criteria for developing a gas safety appliance but also to accident investigating of explosion.

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

An Experimental Study on Characteristics of Small-scale PDE under Low-frequency Operating Conditions (소형 펄스 데토네이션 엔진 저주파수 작동 특성 실험연구)

  • Han, Hyung-Seok;Kim, Jung-Min;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.81-89
    • /
    • 2018
  • In this study, the operating characteristics of a small-scale pulse detonation engine (PDE) were investigated experimentally for application as a small thruster and an igniter. The PDE was constructed using commercial gas tubes with an inner diameter of 4.22 mm. The operating and detonation propagation characteristics of the PDE were investigated over the ranges of equivalence ratios and operating frequencies. Measured detonation speed was close to 10% of the theoretical CJ values at 1 Hz and 5 Hz conditions. However, unstable propagation characteristics were shown at 20 Hz and lean conditions, where the velocity deficit was increased by 20~62%.

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

A Study on the Measurement of the Dimensionless Light Extinction Constant for Particulate Matter from Fuel Oil for Marine and Land Diesel Engines (선박 및 육상 디젤 엔진용 연료유에서 발생하는 입자상물질에 대한 무차원 광소멸계수 계측에 관한 연구)

  • Rho, Beom-Seok;Choi, Jae-Hyuk;Cho, Kwon-Hae;Park, Seul-Hyun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.275-281
    • /
    • 2018
  • It is known that he pollutant emitted from the combustion process of marine fuel oil causes air pollution and harmful effects to the human body. Accordingly, IMO regulates pollutants emitted from ships. However, the regulation of Particulate Matter (PM) is still in the process of debate, so preemptive action is needed. Fundamental research on PM is essential. In this study, the Dimensionless Light Extinction Constant ($K_e$) of fuel oil used in marine diesel engines was measured and analyzed to construct the basic data of the PM generated from marine-based fuel oil. The fuel oil used in the land diesel engine was measured in the same way for character comparison. Both fuel oils differ in sulfur content and density. The $K_e$ was measured via the optical method using a 633 nm laser and was determined by using the volume fraction of PM collected by the gravimetric filter method. The $K_e$ of the PM discharged from marine fuel oil is 8.28, and the land fuel oil is 8.44. The $K_e$ of two fuel oils was similar within the measurement uncertainty range. However, it was found by comparison with the value obtained by the Rayleigh-Limit solution that the light scattering portion could be large. Also, it was found that light extinction characteristics could be different due to the relationship between light transmittance and collected mass.