• Title/Summary/Keyword: Constant Temperature

Search Result 5,149, Processing Time 0.038 seconds

Effect of Temperature Variations on Heat Transfer Coefficient in Crossflow over a Circular Cylinder (온도변화가 실린더 주위 열전달계수에 미치는 영향에 관한 실험적 연구)

  • Kauh, S.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • coefficient precisely, experiments were carried out in three categories which contain the regime of (1) constant wire temperature (2) constant fluid temperature (3) constant temperature difference between wire and fluid. Measurements were made with electrically heated circular tungsten wire placed normal to air stream at the exit of jet. Heat transfer coefficient was increased with wire temperature increasing and decreased by fluid temperaure increasing and was not changed with varying both temperature if their difference were kept constant.

  • PDF

Simulated Distribution Characteristics of Surface Temperature on Irradiating of a Laser

  • Lee, Young-Wook;Yeon, Sang-Ho
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2009
  • In this paper, we concern about the distribution characteristics of surface temperature by the increment of time, diffusivity and heat flux on irradiating of a laser. The penetration depth corresponding to the induced constant heat flux or irradiated laser, is simulated by a computer algorithm. The distribution of temperature versus penetration depth for the variation of time and diffusivity is characterized at the constant heat flux and on irradiating of a laser. The temperature of constant heat flux at the fixed diffusivity or time, is decreased by the pattern of exponential function as the time t or diffusivity a is increased (a=10, 100, 1000). The temperature of constant heat flux is not changed but exponentially fixed with the increasing diffusivity and the fixed time. On the other hand, the temperature of laser at the fixed diffusivity or time is decreased linearly. Our results show that the characteristics of the simulated surface temperature in a semi-infinite solid are similar to the graphs on theoretical consideration.

Design and Analysis of 20 W Class LED Converter Considering Its Control Method (제어 방식에 따른 20 W급 LED Converter 설계 및 분석)

  • Jeong, Young-Gi;Kim, Sung-Hyun;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.53-57
    • /
    • 2012
  • In this paper, by designing 20 W class driving circuit for driving high-power LED (Light Emitting Diode), we are going to comparatively carry out the analysis of characteristics for power circuit according to each design method. In this case, 200 V 60 Hz was performed as input data. The electrical characteristics such as voltage, current and ripple are checked for constant current circuit and constant voltage circuit in the LED module. In addition, as the ripple has an influence on illumination of LED light, low temperature working (-20 [$^{\circ}C$]) and high temperature working(80 [$^{\circ}C$]) are measured to make sure the ripple characteristics in accordance with temperature. In low temperature operation -20 [$^{\circ}C$] measurements, both constant current circuit and constant-voltage circuit were less impacted on input fluctuation, whereas in the high temperature operation 80 [$^{\circ}C$], current voltage in constant voltage circuit was surge after 430 [hour]. Voltage current ripple of constant current circuit was much less than constant voltage circuit, therefore we can show that constant current circuit is more stable.

Evaluation of trueness of maxillary and mandibular denture bases produced with a DLP printer by immersion in a constant temperature water bath (DLP 프린터로 제작한 상악 및 하악 의치상의 항온수조 침적에 따른 진실도(trueness) 평가)

  • Dong-Yeon Kim;Gwang-Young Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Purpose: To evaluate the three-dimensional trueness of upper and lower denture bases produced using a digital light processing (DLP) printer and immersed in a constant-temperature water bath. Methods: An edentulous model was prepared and fitted with denture bases and occlusal rims manufactured using base plate wax. After scanning the model, denture bases, and occlusal rims, complete denture designs were created. Using the designs and a DLP printer, 10 upper and 10 lower complete dentures were manufactured. Each denture was scanned before (impression surface of upper denture base before constant temperature water bath [UBC] and impression surface of lower denture base before constant temperature water bath [LBC] groups) and after (impression surface of upper denture base after constant temperature water bath [UAC] and impression surface of lower denture base after constant temperature water bath [LAC] groups) immersion in the constant-temperature water bath. Scanned files were analyzed by comparing reference and scanned data, with statistical analysis conducted using the Kruskal-Wallis test (α=0.05). Results: Statistical analysis revealed no significant differences between the UBC and LBC groups, nor between the UAC and LAC groups (p>0.05). However, significant differences were observed between the UBC and UAC groups and between the LBC and LAC groups, i.e., before and after the constant-temperature water bath for both maxillary and mandibular denture bases (p<0.05). Conclusion: Denture bases not immersed in the constant-temperature water bath (UBC and LBC groups) exhibited error values within 100 ㎛, whereas those immersed in the water bath (UAC and LAC groups) showed error values exceeding 100 ㎛.

A Study on the Ignition Delay of Fish Oil Using a Constant Volume Combustion Bomb (정용연소장치에 의한 어유의 착화지연에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The ignition delay of diesel oil and fish oil blended with diesel oils was investigated at various pressure and temperature conditions in a constant volume combustion bomb. The evaporation and combustion duration of diesel oil and fish oil blended with diesel oils were respectively different in high and low temperature. The dependence of ignition delay on the temperature was different in high and low temperature ranges which were divided at the 773K. The dependence of ignition delay on the pressure was almost linear, regardless of the test fuels at the constant temperature(863K). The ignition delay became longer as the blending rate of fish oil increased at the constant temperature and pressure, but it was especially short with 20% fish oil blended with diesel oils.

  • PDF

Prediction of Concrete Compressive Strength by a Modified Rate Constant Model (수정 반응률 상수 모델에 의한 콘크리트 압축강도의 예측)

  • 한상훈;김진근;문영호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.31-42
    • /
    • 2000
  • This paper discusses the validity of models predicting the compressive strength of concrete subjected to various temperature histories and the shortcomings of existing rate constant model and apparent activation energy concept. Based on the discussion, a modified rate constant model is proposed. The modified rate constant model, in which apparent activation energy is a nonlinear function of curing temperature and age, accurately estimates the development of the experimental compressive strengths by a few researchers. Also, the apparent activation energy of concrete cured with high temperature decreases rapidly with age, but that of concrete cured with low temperature decreases gradually with age. Finally generalized models to predict apparent activation energy and compressive strength are proposed, which are based on the regression results.

An experimental study on the evaporation of paraffin family fuel droplet under high temperature and high pressure (고온 고압기류중을 비행하는 파라핀계 연료액적의 증발에 관한 연구)

  • ;川口修
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2125-2131
    • /
    • 1991
  • Evaporation rate constant, obtained by in this experimental study, of freely falling liquid fuel droplet on the condition of hot and pressurized environment are converted to critical evaporation constant according to Eq. of Ranz and Marshall. Critical evaporation constant, on constant environment pressuire, actively increase almost linearly with environment temperature increasing, but, on constant temperature, increases more or less with pressure increasing. Multycomponent droplet mixed with the fine fuel having a different of boiling point evaporate in order to boiling point, and each evaporation rate constant of mixed fuel equal to each fuel.

Internal communication as CCTV Automatic Climate Control System Development (CCTV통신용 함체내의 항온항습 자동제어 장치 개발)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.433-439
    • /
    • 2015
  • Enclosures for CCTV internal short circuit are prevented due to wetting to maintain a constant humidity and temperature, to avoid condensation due to temperature difference, a constant temperature and humidity requirements of the equipment, such as high-temperature resistant and a constant temperature of the structure, degree of energy utilization is optimized for developing this corresponding housing automatic control system and humidity is required. Device being an expensive imaging equipment in side of the enclosure according to the temperature conversion from a hazard protection, there is a need for a constant temperature and humidity control apparatus that can prevent a short-circuit failure. This is a system in which the accessory device is absolutely required for the storage and transmission of an image in recording reliability and field conditions.

Size Distribution and Temperature Dependence of Magnetic Anisotropy Constant in Ferrite Nanoparticles

  • Yoon, Sunghyun
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.104-105
    • /
    • 2012
  • The temperature dependence of the effective magnetic anisotropy constant K(T) of ferrite nanoparticles is obtained based on the measurements of SQUID magnetometry. For this end, a very simple but intuitive and direct method for determining the temperature dependence of anisotropy constant K(T) in nanoparticles is introduced in this study. The anisotropy constant at a given temperature is determined by associating the particle size distribution f(r) with the anisotropy energy barrier distribution $f_A(T)$. In order to estimate the particle size distribution f(r), the first quadrant part of the hysteresis loop is fitted to the classical Langevin function weight-averaged with the log?normal distribution, slightly modified from the original Chantrell's distribution function. In order to get an anisotropy energy barrier distribution $f_A(T)$, the temperature dependence of magnetization decay $M_{TD}$ of the sample is measured. For this measurement, the sample is cooled from room temperature to 5 K in a magnetic field of 100 G. Then the applied field is turned off and the remanent magnetization is measured on stepwise increasing the temperature. And the energy barrier distribution $f_A(T)$ is obtained by differentiating the magnetization decay curve at any temperature. It decreases with increasing temperature and finally vanishes when all the particles in the sample are unblocked. As a next step, a relation between r and $T_B$ is determined from the particle size distribution f(r) and the anisotropy energy barrier distribution $f_A(T)$. Under the simple assumption that the superparamagnetic fraction of cumulative area in particle size distribution at a temperature is equal to the fraction of anisotropy energy barrier overcome at that temperature in the anisotropy energy barrier distribution, we can get a relation between r and $T_B$, from which the temperature dependence of the magnetic anisotropy constant was determined, as is represented in the inset of Fig. 1. Substituting the values of r and $T_B$ into the $N{\acute{e}}el$-Arrhenius equation with the attempt time fixed to $10^{-9}s$ and measuring time being 100 s which is suitable for conventional magnetic measurement, the anisotropy constant K(T) is estimated as a function of temperature (Fig. 1). As an example, the resultant effective magnetic anisotropy constant K(T) of manganese ferrite decreases with increasing temperature from $8.5{\times}10^4J/m^3$ at 5 K to $0.35{\times}10^4J/m^3$ at 125 K. The reported value for K in the literatures is $0.25{\times}10^4J/m^3$. The anisotropy constant at low temperature region is far more than one order of magnitude larger than that at 125 K, indicative of the effects of inter?particle interaction, which is more pronounced for smaller particles.

  • PDF

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF