• Title/Summary/Keyword: Constant Refrigerant Pressure Control

Search Result 2, Processing Time 0.018 seconds

Development of Heating and Cooling System with New Heat Exchange Cycle for High Efficiency and Peak Power Reduction Using Real time Constant Refrigerant Pressure Control (실시간 일정압력 제어기술을 적용한 냉난방장치의 피크부하 저감과 에너지 효율 향상을 위한 시스템 개발)

  • Choi, Sun-Young;Lee, Young-Kug;Choi, Myeong-Gwang;Choi, Tae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.53-58
    • /
    • 2015
  • Systemic heating and cooling air conditioning systems are popular in various industrial fields and even home. Recently, the rate of supply of this kind of multi-heat pump has been increased under ESCO financing supporting system. Generally the heat pumping system has a structural simplicity and easy installation benefits. and has good running efficiency under normal designed condition. But under extreme climate condition (over $+30^{\circ}C$, under $-10^{\circ}C$), this system exposes abnormal power consumption. It causes high progressive electric power rates and resultant peak power capacity of power plant. In this paper, a novel system concept of buffering refrigerant accumulator and constant pressure control system to relieve peak power load is proposed and this system's utility is verified with an prototype experimental system.

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF