• Title/Summary/Keyword: Consolidation process

Search Result 333, Processing Time 0.029 seconds

Practical Design of the Sandmat Considering Consolidation Settlement Properties (연약지반의 침하특성을 고려한 샌드매트의 실용적 설계를 위한 고찰)

  • Lee, Bongjik;Kwon, Youngcheul;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.31-38
    • /
    • 2007
  • The practical design method on sandmat uses a drain length, rate of consolidation settlement and permeability of sand as a major design factors. And, on the basis of this design process, it has been installed beneath the embankment with same thickness. However, the possibility the underestimation on the thickness of sandmat and the delayed drain have been pointed out by several authors caused by a differential settlement at the center and the end of embankment. In this study, therefore, the effect of the differential settlement on the thickness of sandmat and delayed drain through the numerical analysis of embankment was analyzed. As a result, a substantial sandmat thickness becomes small and the possibility of the delayed drain can be certified because of the development of differential settlement at the center and ends of embankment. As a countermeasure to overcome this problem, the applicability of the mound type sandmat was also investigated by the numerical method. It can be concluded that it maintains the designated substantial sandmat thickness throughout consolidation process, and is useful method to maintain the drain capacity. Especially, the mound type sandmat is effective method for a construction site where can cause a differential settlement such as embankment. Furthermore, it has to be designed on the basis of the accurate prediction of consolidation settlement as well as rate of consolidation settlement, drain length and permeability of sand.

  • PDF

A Study on Improvement of Road Compaction Method in Soft Ground (연약지반 상 노상다짐 방법 개선에 대한 연구)

  • Choi, Hyeonsuk;Jang, Hohun
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • The purpose of this study is to improve construction cost, time, and field management when constructing a road on soft soil foundation by eliminating extra-banking of subgrade layer after completion of the consolidation process. The subgrade layer was pre-constructed before the soft ground improvement. And then it was confirmed by the field test that the compaction effect was maintained or not after consolidation settlement. As a result of the experiment, all subgrade layers were kept constant except for the top subgrade layer. So it would be advantageous to secure economical and practical in road construction if subgrade layers were constructed exclusive of the top subgrade layer.

Effects of Powder Size and Ball-milling Time on the Magnetic Properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Nanocrystalline Alloy Powder Cores ($Fe_{73}Si_{16}B_7Nb_3Cu_1$ 나노결정합금 분말코아의 자기적 특성에 미치는 분말입도 및 볼밀링 시간의 영향)

  • Mun, Byeong-Gi;Gang, Seong-Chan;Park, Won-Uk;Son, Geun-Yong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.121-129
    • /
    • 2004
  • The influence of powder size and ball-milling time on the magnetic properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline alloy powder was investigated. Flake-shaped powders were produced by pulverizing the ribbons annealed at $550^\circC$ for 1 hour. The powders were classified and consolidated into core shapes at a pressure of 18ton/$cm^2$. The initial permeability at 100kHz of the inductor core produced using $53-75\mum$ powders showed the highest value although its consolidated density showed the lowest one. The reason for the result is due to the cracking of the particles larger than $75\mum$ during the consolidation process. The ball-milling of powders for 2-4 hours improved the consolidation density and the initial permeability of the cores. The intrinsic coercivity of the powder decreased as well, resulting from the stress relief of the powder by a short-time milling.

  • PDF

Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground (연직배수재가 타설된 지반의 복합통수능 해석)

  • Kim, Chang-Young;Kwak, No-Kyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

Geomechanical properties of synthesised clayey rocks in process of high-pressure compression and consolidation

  • Liu, Taogen;Li, Ling;Liu, Zaobao;Xie, Shouyi;Shao, Jianfu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Oil and natural gas reserves have been recognised abundantly in clayey rich rock formations in deep costal reservoirs. It is necessary to understand the sedimentary history of those reservoir rocks to well explore these natural resources. This work designs a group of laboratory experiments to mimic the physical process of the sedimentary clay-rich rock formation. It presents characterisation results of the physical properties of the artificial clayey rocks synthesized from illite clay, quartz sand and brine water by high-pressure consolidation tests. Special focus is given on the effects of illite clay content and high-stress consolidation on the physical properties. Multi-step loaded consolidation experiments were carried out with stress up to 35 MPa on mixtures constituting of the illite clay, quartz sand and brine water with five initial illite clay contents (w=85%, 70%, 55%, 40% and 25%). Compressibility and void ratio were characterised throughout the physical compaction process of the mixtures constituting of five illite clay contents and their water permeability was measured as well. Results show that the applied stress induces a great reduction of clayey rock void ratio. Illite clay contents has a significant influence on the compressibility, void ratio and the permeability of the physically synthesized clayey rocks. There is a critical illite clay content w=70% that induces the minimum void ratio in the physically synthesised clayey rocks. The SEM study indicates, in the high-pressure synthesised clayey rocks with high illite clay contents, the illite clay minerals are located in layers and serve as the material matrix, and the quartz minerals fill in the inter-mineral pores or are embedded in the illite clay matrix. The arrangements of the minerals in microscale originate the structural anisotropy of the high-pressure synthesised clayey rock. The test findings can give an intuitive physical understanding of the deep-buried clayey rock basins in energy reservoirs.

Subsidence estimation of breakwater built on loosely deposited sandy seabed foundation: Elastic model or elasto-plastic model

  • Shen, Jianhua;Wu, Huaicheng;Zhang, Yuting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.418-428
    • /
    • 2017
  • In offshore area, newly deposited Quaternary loose seabed soils are widely distributed. There are a great number of offshore structures has been built on them in the past, or will be built on them in the future due to the fact that there would be no very dense seabed soil foundation could be chosen at planed sites sometimes. However, loosely deposited seabed foundation would bring great risk to the service ability of offshore structures after construction. Currently, the understanding on wave-induced liquefaction mechanism in loose seabed foundation has been greatly improved; however, the recognition on the consolidation characteristics and settlement estimation of loose seabed foundation under offshore structures is still limited. In this study, taking a semi-coupled numerical model FSSI-CAS 2D as the tool, the consolidation and settlement of loosely deposited sandy seabed foundation under an offshore breakwater is investigated. The advanced soil constitutive model Pastor-Zienkiewics Mark III (PZIII) is used to describe the quasi-static behavior of loose sandy seabed soil. The computational results show that PZIII model is capable of being used for settlement estimation problem of loosely deposited sandy seabed foundation. For loose sandy seabed foundation, elastic deformation is the dominant component in consolidation process. It is suggested that general elastic model is acceptable for subsidence estimation of offshore structures on loose seabed foundation; however, Young's modulus E must be dependent on the confining effective stress, rather than a constant in computation.

Characteristics of Long-Term Settlement in the Soft Ground of Nakdong River by Numerical Analysis (수치해석에 의한 낙동강 하구 연약지반의 장기침하특성)

  • Park, Choon-Sik;Ryu, Mean-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.55-67
    • /
    • 2019
  • Deep soft ground in mouth of Nackdong river requires to be analysed with prediction method concerning characteristics of secondary consolidation from the beginning because it causes excessive settlement due to time-dependant secondary consolidation characteristics. This study investigated characteristics of extended settlement by conducting one-dimensional theory, elasto-plastic model and visco-elasto-plastic model as well as analyzing long-term measuring data observed over 2,000 days. According to one-dimensional theory and elasto-plastic model, there is not definite correlation between height of embankment and depth of soft ground while visco-elasto-plastic model showed similar result of settlement to that of long-term measuring data. Consequently it is suggested that applying visco-elasto-plastic model to developing deep underground place as studied area on predicting extended settlement before construction prevents economic loss and delay during process by preparing secondary consolidation characteristics.