• Title/Summary/Keyword: Consolidation Settlement

Search Result 477, Processing Time 0.026 seconds

Soil Improvement Effect of Waste Lime Sludge Using Prefabricated Vertical Drains (연직배수재를 이용한 폐석회 슬러지의 지반개량 효과)

  • Shin, Eun-Chul;Park, Jeong-Jun;Kim, Jong-In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.51-60
    • /
    • 2005
  • The disposal problem of waste lime which is a residual product of lime industry have caused a lots of arguments in the past few years. Further more, waste lime contains a high moisture content which causes the disposal of waste lime is a great difficulty. The purpose of this study is to investigate for the effective dewatering solutions by placing various prefabricated vertical drains. The moisture content and degree of consolidation, pore water pressure, changes of settlement, bearing capacity with various vertical drains in waste lime were analyzed. The laboratory test results indicate that PBD is 2 times higher than circular drain in coefficient of consolidation. Based on the laboratory test results, settlement, pore water pressure, and dewatering measurements are shown in similar tendency. It is considered that PBD can drain primitive pore water much efficiently. The picture of SEM shows that circular drain filter has a serious clogging problem in comparison with PBD. In conclusion, PBD holds a superiority in waste lime's ground improvement and dewatering pore water pressure from the waste lime sludge. Also, circular drain is desired for some modification in its filtering system.

  • PDF

The Effects of Improvement in Clay with High Moisture Contents Using the Filter Type Vacuum Consolidation Method (필터형 진공압밀공법을 이용한 고함수비 점토지반의 개량효과)

  • Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.55-60
    • /
    • 2010
  • This study are carried out to an lab model tests to develop a construction method that solidifies high-water content cohesive soil by using filter type drain and vacuum pressure, and that stabilizes the ground by accelerating horizontal drain at incline or in tunnel. The calibration chamber was designed within length of 1.5m and height of 50cm, and a drainage hole for preconsolidation, a switchgear and a piezometer were installed at the bottom part of the chamber. Also, a settlement gage was installed at the top part so that it can measure the settlement by time. The calibration ground basis was made in a form of thin layer from kaolinite and bentonite in 9:1 ratio stirred at 130% water content condition. A filter type drain was installed at chamber center and a vacuum pressure of 0.8MPa was applied through a hose linked to the cap at the top part, then, the settlement was measured in every 1 hour interval. After experiment, the moisture contents were measured by position, then, verified the increase of solidity of the ground through a triaxial compression test on undisturbed profile. After 11 days from the effective date, it was observed that the settlement decreased by maximum 35mm and the water content ratio was reduced by 38% at most while the solidity of the ground increased by 5~8 times greater than before preconsolidation.

Analysis on the Safety of Structure and Economics of Replacement Method Using Rock Debris in the Soft Ground - Case Study of Miho Stream Crossing Road in Cheongju City (연약지반 암버럭 치환공법의 구조물 안정성과 경제성 분석 - 청주시 미호천 횡단도로를 대상으로)

  • Heo, Kang Kug;Park, Hyung Keun;Ahn, Byung Chul;Min, Byeong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.705-713
    • /
    • 2016
  • For the soft ground construction, the factors not considered in the design stage occurs in the construction stage so that they cause the increase of the construction cost due to the structural stability and the design change. The subject of the study is the construction section of the industrial complex access road made in the Ochang region of Chungcheongbuk-do. The study is concerned with selecting the soft ground handling method such as the replacement method using rock debris and the surcharge reflecting the service load as the soft ground handling measure and analyzing the effect of reducing the construction cost with the stability of structures and the reduction of the construction period. The soft ground in the study section consists of sandy and cohesive soil and is 2.4m to 5.5m deep. It is distributed unevenly between the 1.5m to 5.9m stratums under the ground surface. Settlement is not serious, but the future uneven settlement and difference are expected so that the future settlement behavior is estimated by analyzing the site measurement results after the soft ground treatment. Moreover, in consideration of the regional characteristics and economic efficiency, soil with good quality is replaced with rock debris as the replacement material so that 29% of the construction cost is reduced due to the increase of stability and the reduction of duration. If the estimation of the dispersion of the pore water pressure within the dam body and the change of the underground water level and the relation of the actually measured soft ground with consolidation is studied further on the basis of the study, it is expected that the behavior of the soft ground will be correctly estimated in various site conditions.

Determination of Optimum Stepped Vacuum Pressure and Settlement for IVPM-applied Ground (개별진공압공법이 적용된 지반의 최적 단계진공압 산정 및 침하예측)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Individual Vacuum Pressure Method (IVPM) is a soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and to strengthen the soft ground. This method does not require surcharge loads, different to embankment or pre-loading method. In this study, the ground improvement efficiency of Individual Vacuum Pressure Method was estimated when suction pressure increases step by step(-20, -40, -60, -80kPa) with different periods. During Individual Vacuum Pressure Method process, surface settlement and pore pressure were monitored, and cone resistance as well as water content were also measured after the completion of Individual Vacuum Pressure Method treatment. From the results, optimum duration of each step of vacuum pressure was determined, and the settlement was calculated using FEM numerical analysis.

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

A Study on Characteristics of Waste Mixed Soil in Landfill (쓰레기 매립지 내 폐기물 혼합지반 특성 연구)

  • Park, Tae-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • This paper presents the geotechnical characteristics of the soil mixed with various waste(waste soil) in the landfill. The physical and mechanical tests were conducted to find out the waste soil. The tests include the gradation, consistency tests, shear and compression and the consolidation tests using both the Rowe cell and the constant ration stress. The analyses of the test results show the waste soil belongs to the well graded sand(SW) in the laboratory and sand-gravel(SG) to fine sand(SF) in the field monitoring based on the unified classification soil system. The shear strength is increasing with increasing the shear displacement, however, the peak of the shear strength does not appear through the test and there is no distinct peak value of the strength obtained. The compression index(Cc) results in as increasing the amount of the sludge included and the compression index is proportional to the sludge included, which means more settlement is expected. The hydraulic conductivity of the waste soil ranges between $1.6{\times}10^{-5}cm/sec$ and $1.8{\times}10^{-7}cm/sec$.

A Study on the Characteristics of Alluvial Clay in Yangsan-Mulgum (양산-물금 충적점토의 토질특성에 관한 연구)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.102-111
    • /
    • 1997
  • Experiments both in laboratory and field were performed to compare and analyze the characteristics of alluvial clay. The alluvial clay was sampled in test site in which large-scaled tests for the part of the site are under process to suggest the rational method for alluvial clay and the criterion for ground settlement monitoring system. The followings were observed through the experiments : 1. Natural water content, plastic limit, and liquid limit of alluvial clay composed of highly fine grains were 40~80%, 10~20%, and 30~55%, respectively. The values of these properties were relatively small at the ground surface, while the values showed maximum at G.L.- l0m and gradually decreased below the level. 2. Shear strength of alluvial clay was proportionally increased to the depth. Unconfined and triaxial compressive strengths were 0.2~0.6kgf/$cm^2$ and 0.1~0.3kgf/$cm^2$, respectively. 3. Compression index and secondary compression index showed maximum values at G.L.-l0m and gradually decreased below the level. The value of consolidation coefficient was relatively large at the ground surface, constant with decreasing the depth, and incresed when G.L. was below -20m. 4. Piezocone test appeared that alluvial clay with N value of 2~4 was uniformly distributed with 20~ 30m thickness from the ground surface, sand seam was nonuniformly distributed, and penetration pore pressure was 0.8 ~ 1 times of the hydrostatic pressure. Undrained shear strength and consolidation coefficient were 0.04 ~ 0.76kgf / $cm^2$ and $2.88{\times} 10{^-4}~1.3{\times} 10{^-2} cm^2/s$ respectively.

  • PDF

Strength and compressibility characteristics of peat stabilized with sand columns

  • Jorat, M. Ehsan;Kreiter, Stefan;Morz, Tobias;Moon, Vicki;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.575-594
    • /
    • 2013
  • Organic soils exhibit problematic properties such as high compressibility and low shear strength; these properties may cause differential settlement or failure in structures built on such soils. Organic soil removal or stabilization are the most important methods to overcome geotechnical problems related to peat soils' engineering characteristics. This paper presents soil mechanical intervention for stabilization of peat with sand columns and focuses on a comparison between the mechanical characteristics of undisturbed peat and peat stabilized with 20%, 30% and 40% of sand on the laboratory scale. Cylindrical columns were extruded in different diameters through a nearly undisturbed peat sample in the laboratory and filled with sand. By adding sand columns to peat, higher permeability, higher shear strength and a faster consolidation was achieved. The sample with 70% peat and 30% sand displayed the most reliable compressibility properties. This can be attributed to proper drainage provided by sand columns for peat in this specific percentage. It was observed that the granular texture of sand also increased the friction angle of peat. The addition of 30% sand led to the highest shear strength among all mixtures considered. The peat samples with 40% sand were sampled with two and three sand columns and tested in direct shear and consolidation tests to evaluate the influence of the number and geometry of sand columns. Samples with three sand columns showed higher compressibility and shear strength. Following the results of this laboratory study it appears that the introduction of sand columns could be suitable for geotechnical peat stabilization in the field scale.

Evaluation of Spatial Distribution of Secondary Compression of Songdo Marine Clay by Probabilistic Method (확률론적 방법을 이용한 인천송도지반 이차압축침하량의 공간적 분포 평가)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Ko, Seong-Kwon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.25-35
    • /
    • 2010
  • Settlement at reclamation area caused by secondary compression should be considered using spatial evaluating method because the thickness of consolidation layer varies at every location. Probabilistic method can be implemented to evaluate uncertainty of spatial distribution of secondary compression. This study spatially evaluated mean and standard deviation of secondary compression in the overall analyzing region using spatial distribution of consolidation thickness estimated by ordinary kriging method and statistical values of soil properties. And then, the area where secondary compression exceeds a design criterion at the specific time was evaluated using probabilistic method. It was observed that the area exceeding the design criterion increased as the variability of $C_{\alpha}/(1+e_o)$ increased or the probabilistic design criterion 0: decreased. It is considered that the probabilistic method can be used for the geotechnical design of soft ground when a probabilistic design criterion is established in the specification.

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF