• Title/Summary/Keyword: Consolidation Settlement

Search Result 477, Processing Time 0.024 seconds

A Study on Improvement of Road Compaction Method in Soft Ground (연약지반 상 노상다짐 방법 개선에 대한 연구)

  • Choi, Hyeonsuk;Jang, Hohun
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • The purpose of this study is to improve construction cost, time, and field management when constructing a road on soft soil foundation by eliminating extra-banking of subgrade layer after completion of the consolidation process. The subgrade layer was pre-constructed before the soft ground improvement. And then it was confirmed by the field test that the compaction effect was maintained or not after consolidation settlement. As a result of the experiment, all subgrade layers were kept constant except for the top subgrade layer. So it would be advantageous to secure economical and practical in road construction if subgrade layers were constructed exclusive of the top subgrade layer.

Analyzing consolidation data to predict smear zone characteristics induced by vertical drain installation for soft soil improvement

  • Parsa-Pajouh, Ali;Fatahi, Behzad;Vincent, Philippe;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.105-131
    • /
    • 2014
  • In this paper, the effects of variability of smear zone characteristics induced by installation of prefabricated vertical drains on the preloading design are investigated employing analytical and numerical approaches. Conventional radial consolidation theory has been adopted to conduct analytical parametric studies considering variations of smear zone permeability and extent. FLAC 2D finite difference software has been employed to conduct the numerical simulations. The finite difference analyses have been verified using three case studies including two embankments and a large-scale laboratory consolidometer with a central geosynthetic vertical drain. A comprehensive numerical parametric study is conducted to investigate the influence of smear zone permeability and extent on the model predictions. Furthermore, the construction of the trial embankment is recommended as a reliable solution to estimate accurate smear zone properties and minimise the post construction settlement. A back-calculation procedure is employed to determine the minimum required waiting time after construction of the trial embankment to predict the smear zone characteristics precisely. Results of this study indicate that the accurate smear zone permeability and extent can be back-calculated when 30% degree of consolidation is obtained after construction of the trial embankment.

Numerical Investigation on Combined Load Carrying Capacity and Consolidation Behavior of Suction Piles (석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Hong, Seung-Rok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.103-116
    • /
    • 2014
  • This paper presents the results of a numerical investigation on the load carrying capacity and consolidation behavior of suction piles. Three dimensional numerical models which reflect realistic ground conditions and installation procedures including the ground-suction pile interface were adopted to conduct a parametric study on variables such as the length-diameter ratio and the loading configurations, i.e, vertical, horizontal, and combined loads. The results indicated that the load carrying capacity of a suction pile can only be realistically obtained when the interface behavior between the suction pile and the ground is correctly modeled. Also carried out was the stress-pore pressure coupled analysis to investigate the consolidation behavior of the suction pile after the application of a vertical loading. Based on the results, failure envelops and associated equations were developed, which can be used to estimate load carrying capacity of suction piles installed in similar conditions considered in this study. The results of consolidation analysis based on the stress-pore pressure coupled analysis indicate that no significant excess pore pressure and associated consolidation settlement occur for the loading configuration considered in part due to the load transfer mechanism of the suction pile.

Composite Ground Effects on Small Area Replacement Ratio of Sand Piles (면적치환비가 작은 샌드파일 설치지반에서의 복합지반효과)

  • Chun, Byung Sik;Yeoh, Yoo Hyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.57-69
    • /
    • 2001
  • Sand pile is widely used as a ground improvement method. Although the primary purpose of constructing sand pile is accelerating consolidation, composite ground effect also can be gained by constructing sand pile. This study was accomplished to understand composite ground effect on the ground improved by sand piles which were applied as vertical drainage material when area replacement ratio was small relatively. For determining bearing capacities of origin ground and sand piles and analysing interaction between embankment and origin ground, bearing tests and earth pressure monitoring are performed. From the results, it turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However, the bearing capacity of sand pile was increased to sixty percentages when compared with origin ground. The increasement of bearing capacity could be caused the change of consolidation characteristics during the process of consolidation by overburden load. Therefore, the composite ground effects depending on stiffness increasement of sand pile would be estimated as a factor decreasing consolidation settlement.

  • PDF

The Effects of Sample Disturbance on Consolidation Properties of Yang-San Clay (시료교란이 양산 점토의 압밀특성에 미치는 영향)

  • 박정규;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.95-102
    • /
    • 1999
  • It is important to estimate the magnitude of settlement and the time of primary consolidation in geotechnical engineering projects. For these purposes, site explorations and laboratory tests are usually performed. However, the mechanical properties determined from laboratory tests on the samples obtained by different sampling techniques show different trends. In this study, three types of consolidation test were carried out on the soil samples obtained by three different sampling techniques (76mm tube, 76mm piston, and block samples), to verify the effect of sample disturbance on consolidation properties. It was found that sampling methods have influence on the $\varepsilon$ - log $\sigma$'$_{v}$ relationship. While insignificant difference of compression indices from the samples obtained by different sampling techniques was observed in compression region, these values showed a different trend in precompression region. The values of $c_{v}$ and k of block samples had a tendency to be larger than those of piston and tube samples. At consolidation pressure larger than $\sigma$'$_{p}$, however, these properties became similar regardless of sampling methods. The block and piston samples gave slightly higher values of $C_{a/}$ $C_{c}$ than tube samples. In the results of I $L_{EOP}$ and CRS test, it was observed that the values of $\sigma$'$_{p measured}$/$\sigma$'$_{p best estimated}$ of Yang-San clay decreases when strain becomes larger than 1.0% and that precompression strain of block samples is in the range of 1.5~2.0% while those of piston and tube samples are 1.75~3.75%. It was also shown that the values of $\sigma$'$_{p}$ of block samples exceed those of piston and tube samples by about 6~10%.6~10%.%.%.%.%.

  • PDF

The Aging Effect of Dredging Clayey Soil on the Consolidation Characteristics (준설점성토의 압밀특성에 미치는 시간효과)

  • 김형주
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • According to the field measurement of dredging-reclaimed land, the actual self-weight consolidation settlement has been frequently reported to be less than the predicted values based on the laboratory tests results. The author estimates that one of the reasons is the reduction of the compressibility due to the sedimentation of the dredging material, Furthemore, the aging effect is ignored in the consolidation characteristics of the very low stress range as a pump dredging-reclaimed land. In this paper, a series of seepage consotidation tests has been carried out by applying the seepage force to the specimen prepared by sedimentation in consolidmeter in order to clarflfy the aging-effect on the compressibility of dredging clayey soil, Also, with a view to overcome unstable consolidation solution occurring in the case where the initial water content is higher as pumpdredging reclaimed land, the finite difference analysis technique using predictorforrector method is suggested that it gets good agreement with ezperimental results. Finally, the compressibility of the dredging clayey soil is depended on self-weight consolidation time.

  • PDF

Finite Element Analysis based on the Macroelement Method for the Design of Vacuum Consolidation (진공압밀공법 설계를 위한 Macro-element법 기반 유한요소해석)

  • Kim, Hayoung;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.29-37
    • /
    • 2022
  • A three-dimensional analysis is required to interpret the drainage behavior of an improved ground with vertical drains, and the macroelement method enables efficient interpretation considering the three-dimensional drainage effect of vertical drains under two-dimensional plane strain condition. In this study, a novel finite element analysis program was developed by applying the macroelement method to the vacuum consolidation method used in ground improvement practice. The conventional macroelement method was used to calculate the amount of drainage from the vertical drain by setting the excess porewater pressure in the drainage material to zero; however, the program developed in this study was improved to consider negative excess porewater pressure as an actual vacuum consolidation condition. To verify the performance of the program, because of a comparison with the measurement values at the site where the vacuum consolidation method was applied, results predicted by the program and field measurement data showed similar settlement behavior.

A Case Study on Soft Soil Treatment Design and Construction in Vietnam (베트남지역에서의 연약지반 개량 설계.시공 사례)

  • Yoon, Dong-Duk;Cho, Sung-Han;Seo, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.336-345
    • /
    • 2010
  • GS E&C was awarded the contract for the construction of Hanoi - Hai Phong Expressway Package EX-7 from Station Km 72+000 to Station Km 81+300 in December 2008. This project is the $7^{th}$ contract package of the 105.5 km long expressway near Hai Phong city, which includes a FCM-styled bridge along with high embankments over soft ground. For these high embankments, there is a need to treat the soft soil for improving the overall stability during construction and for reducing the post-construction settlement of the expressway. The Designer of this project had adopted four (4) different types of ground improvement techniques to treat the soft ground, including the prefabricated vertical drains (PVD), sand drains (SD), pack drains (PD, or sometimes called packed sand drains), and sand compaction piles (SCP). The main focus of soft soil treatment should be paid attention to the residual settlement after construction. In current design, however, it appeared that the secondary compression (or creep) of the improved soil layer and the consolidation settlement of the lower untreated compressible soil layer have been neglected in the estimation of the post-construction settlement. These uncalculated residual settlements may not only unsatisfy the design criteria but also raise serious problems during service period of this expressway. In this paper, the subsoil condition and current design were reviewed focusing on the employed soft soil treatment method and expected residual settlement.

  • PDF

Investigation of Settlement of Concrete Track on High-Speed Railway Due to Groundwater Variation (지하수위 변동에 따른 고속철도 콘크리트궤도의 침하 영향 검토)

  • Lee, Hyunjung;Choi, Yeong-Tae;Lee, Ilwha;Lee, Minsoo;Lee, TaeGyu
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.248-256
    • /
    • 2017
  • Groundwater drawdown was pointed out as one of the causes of induced settlement on high speed railways, especially concrete track. In this study, the effect of groundwater variation on settlement was evaluated through a comparison of field measurements with numerical analysis results. A trial and error method, i.e., repeated numerical analyses by changing material properties, was used to calibrate the model. The model was applied to investigate the effect of groundwater drawdown, thickness of soft layer, and embankment height on residual settlement after concrete track completion. A soft layer thicker than 4m would result in more than 30mm of settlement; a detailed analysis of groundwater behavior thus should be conducted from the design stage to construction.

A Study on the Long-term Settlements Characterlistics and Settlement Prediction of Soft Ground in West-South Region (서남권 연약지반의 장기침하 특성과 침하예측에 관한 연구)

  • Lee, Seungho;Jung, Jisu;Ji, Younghwan;Kim, Sungmun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.77-91
    • /
    • 2012
  • Recently, construction of housing sites, complexes, roads, ports and airports is increasing for high-intensity use of the country and balanced development between regions. Presently, constructions are being conducted at soft ground. Consequently, engineering problems as long-term settlement of the ground, differential settlement, local structural damage have been reported consistently at construction site. In particular, long-term subsidence of the ground as various constructions and loads by the load will necessarily occur in the soft ground of west-south coast and inland coast. Therefore, in this study, regional proper analysis methods of the Hyperbole method, Hosino method, $\sqrt{S}$ method, Asaoka method etc as existing long-term settlement prediction methods have been examined and a study on new prediction method was conducted through deduction of a generalized equation. Correlation coefficients of soil properties and construction conditions has been analyzed and a matching coefficient of long-term settlement characteristics has been deducted. Comparison and analysis of monitoring data and numerical analysis results of 16 local area have been conducted.