• Title/Summary/Keyword: Conservative genes

Search Result 36, Processing Time 0.028 seconds

VARIATION OF UREASE GENES(ureC) FROM Streptococcus salivarius (Streptococcus salivarisu의 요소분해효소 유전자 변이에 관한 연구)

  • Choi, Hye-Jin;Lee, Jin-Yong;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.535-545
    • /
    • 1999
  • Crease of Streptococcus salivarius is believed to play a critical role in bacterial ecology and pH homeostasis in the mouth, and consequently affect the pathogenesis of dental caries and periodontal diseases. Expression of the urease gene is greatly enhanced by low p. f. excess of Carbohydrate, and faster growth. It was observed that urease activity of the strains of S. salivarius that exhibited no of low urease activity was not increased even in low pH condition. In this study, it was hypothesized that the urease gene of the strains is absent, defected, or greatly changed by genetic combination. In order to prove this hypothesis, chromosomes were obtained from 28 S. salivarius strains which had been isolated from normal teeth and carious lesions, subjected to polymerase chain reaction (PCR) using primers encoding highly conserved sequence from ureC, and then the obtained PCR products were compared. The results were as follows: 1. After PCR the strains generated either one of 0.54- and 1.3-kbp PCR products, or none. 2. All 16 strains having a higher urease activity(<50${\mu}mol/min/mg$) produced 0.54-kbp PCR products. 3. Twelve strains without urease activity and with a lower urease activity(<50${\mu}mol/min/mg$) yield either one of 0.54 and 1.3-kbp PCR products, or none. 4. The DNA sequence of the 0.54-kbp PCR product (pCAP-0.54) exhibited 95% identity to the ureC of S. salivarus 57.I; 30bp were found to be different, which led to difference of only 2 amino acids in the sequence. 5. The DNA sequence of the 1.3-kbp PCR product(pCAP-1.3) was found to be highly homologous to the aminopeptidase C gene of Streptococcus thermophilus. Overall results indicate that there are considerable variations of the urease genes from S. salivarus strains and the variations may affect the uncolytic activity of the bacteria directly of indirectly.

  • PDF

Conserved Genes and Metabolic Pathways in Prokaryotes of the Same Genus (동일한 속 원핵생물들의 보존 유전자와 대사경로)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.123-128
    • /
    • 2019
  • The use of 16S rDNA is commonplace in the determination of prokaryotic species. However, it has limitations, and there are few studies at the genus level. We investigated conserved genes and metabolic pathways at the genus level in 28 strains of 13 genera of prokaryotes using the COG database (conserved genes) and MetaCyc database (metabolic pathways). Conserved genes compared to total genes (core genome) at the genus level ranged from 27.62%(Nostoc genus) to 71.76%(Spiribacter genus), with an average of 46.72%. The lower ratio of core genome meant the higher ratio of peculiar genes of a prokaryote, namely specific biological activities or the habitat may be varied. The ratio of common metabolic pathways at the genus level was higher than the ratio of core genomes, from 58.79% (Clostridium genus) to 96.31%(Mycoplasma genus), with an average of 75.86%. When compared among other genera, members of the same genus were positioned in the closest nodes to each other. Interestingly, Bacillus and Clostridium genera were positioned in closer nodes than those of the other genera. Archaebacterial genera were grouped together in the ortholog and metabolic pathway nodes in a phylogenetic tree. The genera Granulicella, Nostoc, and Bradyrhizobium of the Acidobacteria, Cyanobacteria, and Proteobacteria phyla, respectively, were grouped in an ortholog content tree. The results of this study can be used for (i) the identification of common genes and metabolic pathways at each phylogenetic level and (ii) the improvement of strains through horizontal gene transfer or site-directed mutagenesis.

Investigation of Conservative Genes in 711 Prokaryotes (원핵생물 711종의 보존적 유전자 탐색)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1007-1013
    • /
    • 2015
  • A COG (Cluster of Orthologous Groups of proteins) algorithm was applied to detect conserved genes in 711 prokaryotes. Only COG0080 (ribosomal protein L11) was common among all the 711 prokaryotes analyzed and 58 COGs were common in more than 700 prokaryotes. Nine COGs among 58, including COG0197 (endonuclease III) and COG0088 (ribosomal protein L4), were conserved in a form of one gene per one organism. COG0008 represented 1356 genes in 709 of the prokaryotes and this was the highest number of genes among 58 COGs. Twenty-two COGs were conserved in more than 708 prokaryotes. Of these, two were transcription related, four were tRNA synthetases, eight were large ribosomal subunits, seven were small ribosomal subunits, and one was translation elongation factor. Among 58 conserved COGs in more than 700 prokaryotes, 50 (86.2%) were translation related, and four (6.9%) were transcription related, pointing to the importance of protein-synthesis in prokaryotes. Among these 58 COGs, the most conserved COG was COG0060 (isoleucyl tRNA synthetase), and the least conserved was COG0143 (methionyl tRNA synthetase). Archaea and eubacteria were discriminated in the genomic analysis by the average distance and variation in distance of common COGs. The identification of these conserved genes could be useful in basic and applied research, such as antibiotic development and cancer therapeutics.

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

PREVALENCE OF BLACK-PIGMENTED BACTERIA IN INFECTED ROOT CANALS IN KOREA (감염 근관의 흑색세균의 동정)

  • Chung, Ki-Soo;Lim, Sung-Sam;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.447-452
    • /
    • 1999
  • The role of bacteria in root canals and periapical infections is well known and established. In these bacteria, black-pigmented bacteria(BPH) play important role in endodontic infection. BPB are Gram negative anaerobic rods which are closely related 50 clinical symptoms such as pain, percussion, tenderness, foul odor, etc. In America and Europe, many studies on BPB have been done and are continued. But, relatively few studies have been done in Korea, especially its prevalence in Korean population is not yet studied. The purpose of this study is to establish prevalence of BPB in infected root canals and periapical abscesses in Korean people. Microbial samples were collected from the root canals of 34 intact tooth with periapical rarefactions of endodontic origin and 3 periapical abscesses. All samples were incubated in an anaerobic chamber(Coy, Model No. 77. Ann Arbor, Michigan, USA.). Identification of In microorganism was based on its growth in the anaerobic chamber, colonial pigmentation, colonial morphology, Gram stain, and Rapid ID32A(BioMericux SA/69280 Marcy-l'Etoile/France) results. In addition, the polyme ase chain reaction using specific primers for 16S rRNA genes were used differentiate Prevotella nigrescens for Prevotella intermedia. The results were as follows : 1. In this study, thirteen (35%) of thirty seven samples were positive for the growth of BPB. In thirteen samples, sixteen strains of BPR were found. 2. The most frequently identified BPB in root canals and abscesses in Korean were P. nigrescens 5/37(14%) and P. intermedia 5/37(14%). Porphyromonas gingivalis 3/37(8%), Porphyromonas endodontalis 2/37(5%) and Prevotella loecheii 1/37(3%) were also found. 3. In this study, no significant differences were found between the prevalence of BPB in Korean and that of American and European.

  • PDF

Comparison of Metabolic Pathways of Less Orthologous Prokaryotes than Mycoplasma genitalium (Mycoplasma genitalium 보다 보존적 유전자 수가 작은 원핵생물들의 대사경로 비교)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.369-375
    • /
    • 2018
  • Mycoplasma genitalium has 367 conserved genes and the smallest genome among mono-culturable prokaryotes. Conservative metabolic pathways were examined among M. genitalium and 14 prokaryotes, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans and 13 intracellular eubacteria of plants or insects, with fewer conserved genes than M. genitalium. They have 11 to 71 metabolic pathways, however complete metabolic pathways ranged from 1 to 24. Totally, metabolic pathway hole is very high due to the lack of 45.8% of the enzymes required for the whole metabolic pathways and it could be suggested that the shared metabolic pathway with the host's enzyme would work or the essential substances are host dependent. The number of genes necessary for mass transfer through the cell membrane is also very low, and it may be considered that the simple diffusion or the protein of the host will function in the cell membrane of these prokaryotes. Although the tRNA charging pathway was distributed in all 15 prokaryotes, each has 5-20 tRNA charging genes. This study would give clues to the understanding of the metabolic pathways of intracellular parasitic bacteria of plant and endosymbiotic bacteria of insects, and could provide basic data for prevention of crop damage, development of insect pests and human medicines.

Comparison of methods for the proportion of true null hypotheses in microarray studies

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2020
  • We consider estimating the proportion of true null hypotheses in multiple testing problems. A traditional multiple testing rate, family-wise error rate is too conservative and old to control type I error in multiple testing setups; however, false discovery rate (FDR) has received significant attention in many research areas such as GWAS data, FMRI data, and signal processing. Identify differentially expressed genes in microarray studies involves estimating the proportion of true null hypotheses in FDR procedures. However, we need to account for unknown dependence structures among genes in microarray data in order to estimate the proportion of true null hypothesis since the genuine dependence structure of microarray data is unknown. We compare various procedures in simulation data and real microarray data. We consider a hidden Markov model for simulated data with dependency. Cai procedure (2007) and a sliding linear model procedure (2011) have a relatively smaller bias and standard errors, being more proper for estimating the proportion of true null hypotheses in simulated data under various setups. Real data analysis shows that 5 estimation procedures among 9 procedures have almost similar values of the estimated proportion of true null hypotheses in microarray data.

A CHANGE IN UREASE ACTIVITY OF Streptococcus salivarius CAUSED BY DIFFERENT ORAL ENVIRONMENT (구강환경에 따른 Streptococcus salivarius의 요소분해활성의 변화)

  • Mok, Ji-Eun;Park, Sang-Jin;Choi, Gi-Woon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.587-598
    • /
    • 2000
  • Urea in the oral cavity is hydrolyzed mainly by bacterial ureases to ammonia, which in turn, raises pH of the oral environment, maintaining oral pH homeostasis, thereby inhibiting dental caries. Streptococcus salivarius has been shown to be a major contribution to oral ureolysis. Synthesis of urease by S. salivarius appears to be constitutive, but can be greatly enhanced in the acidic environment. It has been presumed that ureolytic activity of S. salivarius strains isolated from caries-active site is greater than that of strains from caries-free site. However, no in vivo study has supported the presumption. The present study was performed to observe the ureolytic activity of S. salivarius strains isolated from different environments in the same individual, finding out whether the ureolytic activity is related to dental caries. For the purpose, S. salivarius strains were isolated from caries-active site (>C2), a caries-free site of the tooth, and the dorsum of the tongue of each of 50 patients having decayed teeth. The strains isolated from the patients who harbored S. salivarius in more than two sites were selected and then their ureolytic activities were measured. In order to examine clonal diversity of the strains, their ureC genes were amplified by polymerase chain reaction (PCR) and then restricted with EcoRV, and the protein profiles of the strains were compared by SDS-PAGE. The results were as follows: 1. Of 50 patients, 13 patients harbored S. salivarius in more than two sites; a total of 61 S. salivarius strain were isolated from the patients and selected for the study. 2. Of 17 isolates from the caries-active site of 9 patients harboring S. salivarius in more than two sites including carious lesion, 10 (58.8%) showed a high ureolytic activity (> 200 ${\mu}mol/min/mg$). While, 19 out of 44 isolates (43.2%) from the caries-free site of the teeth and the dorsum of the tongues of 13 patients were the strains with a high ureolytic activity. 3. Of 9 patients harboring S. salivarius in more than two sites including caries-active site. 6 patients were found to have the strains in the caries-active site showing a lower ureolytic activity than the strains in the other sites. 4. Of 34 isolates with ureolytic activity higher than 40 ${\mu}mol/min/mg$, 32 isolates produced 0.54-Kbp PCR products regardless of the sites of bacterial collection. In contrast, of 27 isolates with ureolytic activity lower than 40${\mu}mol/min/mg$, 26 isolates yielded 1.3-Kbp PCR products or none regardless of the sites. 5. Different clonal types of S. salivarius with relatively higher and lower ureolytic activities were found in the same individuals and even in the same sites. 6. None of strains showing different ureolytic activity appeared to be the same clonal type. The overall results suggest that ureolytic activity of the isolates does not appear to be related to differences of the environments but related to their own genetic traits.

  • PDF

Implications of specific gene expression patterns in enamel knot in tooth development

  • Kim, Tae-Young;Neupane, Sanjiv;Aryal, Yam Prasad;Lee, Eui-Seon;Kim, Ji-Youn;Suh, Jo-Young;Lee, Youngkyun;Sohn, Wern-Joo;An, Seo-Young;Ha, Jung-Hong;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2020
  • Enamel knot (EK)-a signaling center-refers to a transient morphological structure comprising epithelial tissue. EK is believed to regulate tooth development in early organogenesis without its own cellular alterations, including proliferation and differentiation. EKs show a very simple but conserved structure and share functions with teeth of recently evolved vertebrates, suggesting conserved signaling in certain organs, such as functional teeth, through the course of evolution. In this study, we examined the expression patterns of key EK-specific genes including Dusp26, Fat4, Meis2, Sln, and Zpld1 during mice embryogenesis. Expression patterns of these genes may reveal putative differentiation mechanisms underlying tooth morphogenesis.

The application of chitosan to dental medicine

  • Hayashi, Y.;Yamada, S.;Ohara, N.;Kim, S-K.;Ikeda, T.;Yanagiguchi, K.;Matsunaga, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.545-545
    • /
    • 2003
  • Chitosan is applied as a dressing for oral mucous wound and a tampon following radical treatment of maxillary sinus. Furthermore, it is being investigated as an absorbing membrane for endodontic and periodontic surgeries. A few studies have reported osteoconduction and osteogenesia at the site of chitosan implant in vivo. However, compared with soft tissue healing processes, the mechanisms concerning effects of chitosan for biological mineralization have not yet been resoil In the present study, we studied the gene expression pattern using cDNA microarray and RT-PCR analyses in hard tissue forming osteoblasts cultured with water-soluble and low molecular weight chitooligosaccharide. cDNA microarray analysis revealed that 16 genes were expressed at 〉1.5-fold higher signal ratio levels in the experimental group compared with the control group after 3 days. RT-PCR analysis showed that chitosan oligomer induced an increase in the expression of two genes, CD56 antigen and tissue-type plasminogen activator. Furthermore, the expression of mRNAs for BMP-2 was almost identical in the experimental and control groups after 3 days of culture, but slightly increased after 7 days of culture with chitosan oligomer. These results suggest that a super-low concentration of chitooligosaccharide could modulate the activity of osteoblastic cells through mRNA levels and that the genes concerning cell proliferation and differentiation can be controlled by water-soluble chitosan.

  • PDF