• Title/Summary/Keyword: Consensus algorithms

Search Result 67, Processing Time 0.031 seconds

Evaluation and Comparative Analysis of Scalability and Fault Tolerance for Practical Byzantine Fault Tolerant based Blockchain (프랙티컬 비잔틴 장애 허용 기반 블록체인의 확장성과 내결함성 평가 및 비교분석)

  • Lee, Eun-Young;Kim, Nam-Ryeong;Han, Chae-Rim;Lee, Il-Gu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.271-277
    • /
    • 2022
  • PBFT (Practical Byzantine Fault Tolerant) is a consensus algorithm that can achieve consensus by resolving unintentional and intentional faults in a distributed network environment and can guarantee high performance and absolute finality. However, as the size of the network increases, the network load also increases due to message broadcasting that repeatedly occurs during the consensus process. Due to the characteristics of the PBFT algorithm, it is suitable for small/private blockchain, but there is a limit to its application to large/public blockchain. Because PBFT affects the performance of blockchain networks, the industry should test whether PBFT is suitable for products and services, and academia needs a unified evaluation metric and technology for PBFT performance improvement research. In this paper, quantitative evaluation metrics and evaluation frameworks that can evaluate PBFT family consensus algorithms are studied. In addition, the throughput, latency, and fault tolerance of PBFT are evaluated using the proposed PBFT evaluation framework.

The Similarity Plot for Comparing Clustering Methods (군집분석 방법들을 비교하기 위한 상사그림)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.361-373
    • /
    • 2013
  • There are a wide variety of clustering algorithms; subsequently, we need a measure of similarity between two clustering methods. Such a measure can compare how well different clustering algorithms perform on a set of data. More numbers of compared clustering algorithms allow for more number of valuers for a measure of similarity between two clustering methods. Thus, we need a simple tool that presents the many values of a measure of similarity to compare many clustering methods. We suggest some graphical tools to compareg many clustering methods.

Support vector machines for big data analysis (빅 데이터 분석을 위한 지지벡터기계)

  • Choi, Hosik;Park, Hye Won;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.989-998
    • /
    • 2013
  • We cannot analyze big data, which attracts recent attentions in industry and academy, by batch processing algorithms developed in data mining because big data, by definition, cannot be uploaded and processed in the memory of a single system. So an imminent issue is to develop various leaning algorithms so that they can be applied to big data. In this paper, we review various algorithms for support vector machines in the literature. Particularly, we introduce online type and parallel processing algorithms that are expected to be useful in big data classifications and compare the strengths, the weaknesses and the performances of those algorithms through simulations for linear classification.

Distributed Fusion Estimation for Sensor Network

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2019
  • In this paper, we propose a distributed fusion estimation for sensor networks using a receding horizon strategy. Communication channels were modelled as Markov jump systems, and a posterior probability distribution for communication channel characteristics was calculated and incorporated into the filter to allow distributed fusion estimation to handle path loss observation situations automatically. To implement distributed fusion estimation, a Kalman-Consensus filter was then used to obtain the average consensus, based on the estimates of sensors randomly distributed across sensor networks. The advantages of the proposed algorithms were then verified using a large-scale sensor network example.

A Study on Consensus Algorithm based on Blockchain (블록체인 기반 합의 알고리즘 연구)

  • Yoo, Soonduck
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.25-32
    • /
    • 2019
  • The core of the block chain technology is solving the problem of agreement on double payment, and the PoW, PoS and DPoS algorithms used for this have been studied. PoW in-process proofs are consensus systems that require feasible efforts to prevent minor or malicious use of computing capabilities, such as sending spam e-mail or initiating denial of service (DoS) attacks. The proof of the PoS is made to solve the Nothing at stake problem as well as the energy waste of the proof of work (PoW) algorithm, and the decision of the sum of each node is decided according to the amount of money, not the calculation ability. DPoS is that a small number of authorized users maintain a trade consensus through a distributed network, whereas DPS provides consent authority to a small number of representatives, whereas PoS has consent authority to all users. If PoS is direct democracy, DPoS is indirect democracy. This study aims to contribute to the continuous development of the related field through the study of the algorithm of the block chain agreement.

Simulator Design and Performance Analysis of BADA Distributed Consensus Algorithm (BADA 분산합의 알고리즘 시뮬레이터 설계 및 성능 분석)

  • Kim, Young Chang;Kim, Kiyoung;Oh, Jintae;Kim, Do Gyun;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.168-177
    • /
    • 2020
  • In recent years, importance of blockchain systems has been grown after success of bitcoin. Distributed consensus algorithm is used to achieve an agreement, which means the same information is recorded in all nodes participating in blockchain network. Various algorithms were suggested to resolve blockchain trilemma, which refers conflict between decentralization, scalability, security. An algorithm based on Byzantine Agreement among Decentralized Agents (BADA) were designed for the same manner, and it used limited committee that enables an efficient consensus among considerable number of nodes. In addition, election of committee based on Proof-of-Nonce guarantees decentralization and security. In spite of such prominence, application of BADA in actual blockchain system requires further researches about performance and essential features affecting on the performance. However, performance assessment committed in real systems takes a long time and costs a great deal of budget. Based on this motivation, we designed and implemented a simulator for measuring performance of BADA. Specifically, we defined a simulation framework including three components named simulator Command Line Interface, transaction generator, BADA nodes. Furthermore, we carried out response surface analysis for revealing latent relationship between performance measure and design parameters. By using obtained response surface models, we could find an optimal configuration of design parameters for achieving a given desirable performance level.

The Determination of the Duration of Electroconvulsive Therapy-Induced Seizure Using Local Standard Deviation of the Electroencephalogram Signal and the Changes of the RR Interval of Electrocardiogram

  • Kim, Eun Young;Yoo, Cheol Seung;Jung, Dong Chung;Yi, Sang Hoon;Chung, In-Won;Kim, Yong Sik;Ahn, Yong Min
    • Korean Journal of Biological Psychiatry
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives In electroconvulsive therapy (ECT) research and practice, the precise determination of seizure duration is important in the evaluation of clinical relevance of the ECT-induced seizure. In this study, we have developed computerized algorithms to assess the duration of ECT-induced seizure. Methods Subjects included 5 males and 6 females, with the mean age of 33.1 years. Total 55 ECT sessions were included in the analysis. We analyzed the standard deviation of a finite block of electroencephalography (EEG) data and the change in the local slope of RR intervals in electrocardiography (ECG) signals during ECT-induced seizure. And then, we compared the calculated seizure durations from EEG recording (EEG algorithm) and ECG recording (ECG algorithm) with values determined by consensus of clinicians based on the recorded EEG (EEG consensus), as a gold standard criterion, in order to testify the computational validity of our algorithms. Results The mean seizure durations calculated by each method were not significantly different in sessions with abrupt flattened postictal suppression and in sessions with non-abrupt flattened postictal suppression. The intraclass correlation coefficients (95% confidence interval) of the three methods (EEG algorithm, ECG algorithm, EEG consensus) were significant in the total sessions [0.79 (0.70-0.86)], the abrupt flattened postictal suppression sessions [0.84 (0.74-0.91)], and the non-abrupt flattened postictal suppression sessions [0.67 (0.45-0.84)]. Correlations between three methods were also statistically significant, regardless of abruptness of transition. Conclusions Our proposed algorithms could reliably measure the duration of ECT-induced seizure, even in sessions with non-abrupt transitions to flat postictal suppression, in which it is typically difficult to determine the seizure duration.

Comparison of Blockchain's Consensus Algorithms (블록체인의 합의 알고리즘 분석 비교)

  • Kim, Hanjun;Choi, Eunmi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.197-200
    • /
    • 2019
  • 가상 화폐 분야의 핵심 기술로 소개된 블록체인(Blockcahin) 기술은 4차 산업혁명에서 중심이 되는 기술로 주목받고 있다. 본 논문에서는 블록체인 시스템의 구조도와 대표적인 합의 알고리즘, 즉 증명(PoW: Proof of Work), 지분증명(PoS: Proof of Stake) 그리고 PBFT (Practical Byzantine Fault Tolerance)을 조사하였다. 합의 알고리즘의 특성을 분석하기 위하여, 보안성, 에너지 소비량, 거래 처리속도를 지표로 세워서 합의 알고리즘들에 대하여 전체적으로 비교 및 분석을 하였다.

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

A Survey of the Application of Blockchain in Multiple Fields of Financial Services

  • Wang, Yiran;Kim, Dae-Kyoo;Jeong, Dongwon
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.935-958
    • /
    • 2020
  • The core value of finance is credit. It can be said that without credit, there can be no finance. The distributed structure of the blockchain and the low-cost trust-building mechanism based on mathematical algorithms provide a new solution and path for solving and optimizing related problems in the financial field. The blockchain technology is applied in the development of the financial industry through consensus mechanisms, smart contracts, and distributed networks. In this research, a comprehensive survey of the blockchain technology is proposed in the development of financial services including equity crowdfunding and credit investigations in inclusive finance, cross-border remittance, Internet financial payment, P2P lending, supply chains finance, and the application of blockchain in the field of anti-money laundering. This paper discusses the role of blockchain in solutions to different issues in the financial field. It also discusses the architectures in different financial service application scenarios from the perspective of the financial trust mechanism and the perspective of the technology and rule change of blockchain participation in financial innovation. Finally, the problems and challenges of blockchain in financial services are discussed, and corresponding solutions are proposed.