• Title/Summary/Keyword: Connection reliability

Search Result 340, Processing Time 0.021 seconds

Modelling of beam-to-column connections at elevated temperature using the component method

  • Sulong, N.H. Ramli;Elghazouli, A.Y.;Izzuddin, B.A.;Ajit, N.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.23-43
    • /
    • 2010
  • In this paper, a nonlinear model is developed using the component method in order to represent the response of steel connections under various loading conditions and temperature variations. The model is capable of depicting the behaviour of a number of typical connection types including endplate forms (extended and flush) and angle configurations (double web, top and seat, and combined top-seat-web) in both steel and composite framed structures. The implementation is undertaken within the finite element program ADAPTIC, which accounts for material and geometric nonlinearities. Verification of the proposed connection model is carried out by comparing analytical simulations with available results of isolated joint tests for the ambient case, and isolated joint as well as sub-frame tests for elevated temperature conditions. The findings illustrate the reliability and efficiency of the proposed model in capturing the stiffness and strength properties of connections, hence highlighting the adequacy of the component approach in simulating the overall joint behaviour at elevated temperature.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

A Study on the Reliable Transport Mechanism for delivering realtime video and audio data in Internet Broadcasting Applications (다수이용자를 지원하는 인터넷방송을 위한 신뢰적인 영상 및 음성 전송방법에 관한 연구)

  • 김용회;이현태;오용선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.378-382
    • /
    • 2001
  • There are some technical problems in current internet-broadcasting. The load of server rises in proportion to user connection. And the inefficient usage of network bandwidth deteriorates quality of services and doesn't transport multimedia data in real time. To overcome above problems, multicast transport technology is applied to real-time multimedia data transport. But the reliability problem is still remained. This paper provides an efficient design of internet broadcasting server. We propose an multimedia data transport algorithm using adaptive encoding by grouping users according to similar connection environment. Performance evaluations show that the mechanism decreases the load of server and improves the quality of services.

  • PDF

Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive

  • Eom, Yong-Sung;Choi, Kwang-Seong;Moon, Seok-Hwan;Park, Jun-Hee;Lee, Jong-Hyun;Moon, Jong-Tae
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.864-870
    • /
    • 2011
  • As an isotropic conductive adhesive, that is, a hybrid Cu paste composed of Cu powder, solder powder, and a fluxing resin system, has been quantitatively characterized. The mechanism of an electrical connection based on a novel concept of electrical conduction is experimentally characterized using an analysis of a differential scanning calorimeter and scanning electron microscope energy-dispersive X-ray spectroscopy. The oxide on the metal surface is sufficiently removed with an increase in temperature, and intermetallic compounds between the Cu and melted solder are simultaneously generated, leading to an electrical connection. The reliability of the hybrid Cu paste is experimentally identified and compared with existing Ag paste. As an example of a practical application, the hybrid Cu paste is used for LED packaging, and its electrical and thermal performances are compared with the commercialized Ag paste. In the present research, it is proved that, except the optical function, the electrical and thermal performances are similar to pre-existing Ag paste. The hybrid Cu paste could be used as an isotropic conductive adhesive due to its low production cost.

Fatigue analysis of crumble rubber concrete-steel composite beams based on XFEM

  • Han, Qing-Hua;Yang, Guang;Xu, Jie;Wang, Yi-Hong
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • The fatigue fracture of studs is the main reason for failure of composite beams based on massive engineering practices. Hence, studying the laws of cracks initiation and propagation are of great directive significance. eXtended Finite Element Method (XFEM) is an effective method in solving moving discontinuous problems in recent years. This paper extends our recent work on the fatigue damage analysis of stud shear connectors in the steel and crumble rubber concrete (RRFC) composite beams based on XFEM. The process of crack initiation to failure of the stud is simulated and an effective calculation criteria for the fatigue life of the composite beams is put forward. After the reliability of the numerical analysis is verified based on tests results, the extensive parametric study is conducted concerning effects of different rubber contents, shear connection degrees and the stress amplitudes. Results show that with the increasing rubber contents and shear connection degrees, the fatigue lives of composite beams increase obviously. Furthermore, the relationship between the fatigue life of the stud at the edge of the shear span and the whole composite beams is studied. Finally, the S-N curves of the single stud and the whole composite beams are put forward based on XFEM.

A study on the Controller Development Depending Load Variation of a Diesel Generator for Power System Connection of Distributed-source (분산전원의 계통연계를 위한 디젤발전기의 부하변동에 따른 제어기 개발연구)

  • Han, Sang-Seok;Han, Hoo-Sek;Lee, Chang-Goo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.53-57
    • /
    • 2008
  • Diesel generator is most widely used for supplying of emergency electrical power. There have been extensive research efforts to develop ways to Ensure stable electrical power delivery to the loads using hybrid power sutures, such as power source, storage batteries, fuel cells and solar cells. Furthermore, as the role of these diesel generators for emergency electrical power supply has recently become very important, they should assure high reliability and flexibility according to the operation load. Therefore, in this paper, we introduce a controller to be used in diesel generator toenable tracking control of maximum power according to the load variation and suppressing high-order harmonics while maintaining stable frequency.

Analysis of Flow and Congestion control in USN (USN의 전송 계층 프로토콜에서 에러 및 흐름제어의 성능 평가)

  • Cha, Hyun-Soo;Kang, Chul-Kun;Yoo, Seung-Wha;Kim, Ki-Hyung
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.45-50
    • /
    • 2008
  • Many applications of sensor network require connection to the Internet. The transmission protocol of traditional sensor network was designed within the sensor network itself. However, based on 6LoWPAN which can be accessed using IPv6, direct connection is possible between the sensor network and the TCP/IP network outside. Transmission of data in applications of sensor network falls into two main categories. One is a small packet that is periodically produced such as packet related to temperature and humidity. The other is a relatively large packet that brings about network overheads such as images. We investigated the conformance test and pros and cons of application data over the transmission protocol of Zigbee and 6LoWPAN. As a result, both Zigbee and 6LoWPAN have shown low rate of loss for periodic data and have in creased reliability of data transfer. When transmitting streaming image data, both ACK, non ACK mode of Zigbee and UDP of 6LoWPAN minimized transmission time but suffered the consequences of high packet loss. Even though TCP of 6LoWPAN required a long transmission time, we were able to confirm that no loss has occurred.

  • PDF

Finite element modeling of a deteriorated R.C. slab bridge: lessons learned and recommendations

  • Ho, I-Kang;Shahrooz, Bahram M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.259-274
    • /
    • 1998
  • The test results from non-destructive and destructive field testing of a three-span deteriorated reinforced concrete slab bridge are used as a vehicle to examine the reliability of available tools for finite-element analysis of in-situ structures. Issues related to geometric modeling of members and connections, material models, and failure criteria are discussed. The results indicate that current material models and failure criteria are adequate, although lack of inelastic out-of-plane shear response in most nonlinear shell elements is a major shortcoming that needs to be resolved. With proper geometric modeling, it is possible to adequately correlate the measured global, regional, and local responses at all limit states. However, modeling of less understood mechanisms, such as slab-abutment connections, may need to be finalized through a system identification technique. In absence of the experimental data necessary for this purpose, upper and lower bounds of only global responses can be computed reliably. The studies reaffirm that success of finite-element models has to be assessed collectively with reference to all responses and not just a few global measurements.

Mobile Cloud System based on EMRA for Inbody Data

  • Lee, Jong-Sub;Moon, Seok-Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.327-333
    • /
    • 2021
  • Inbody is a tool for measuring health information with high reliability and accuracy to analyze body composition. Unlike the existing method of storing/processing and outputting data on the server side, the health information generated by InBody requires accurate support for health sharing and data analysis services using mobile devices. However, in the process of transmitting body composition measurement information to a mobile service, a problem may occur in data transmission/reception processing. The reason for this is that, since the network network in the cloud environment is used, if the connection is cut off or the connection is changed, it is necessary to provide a global service, not a temporary area, focusing on the mobility of InBody information. In addition, since InBody information is transmitted to mobile devices, a standard schema should be defined in the mobile cloud environment to enable information transfer between standardized InBody data and mobile devices. We propose a mobile cloud system using EMRA(Extended Metadata Registry Access) in which a mobile device processes and transmits body data generated in the inbody and manages the data of each local organization with a standard schema. The proposed system processes the data generated in InBody and converts it into a standard schema using EMRA so that standardized data can be transmitted. In addition, even when the mobile device moves through the area, the coordinator subsystem is in charge of providing access services. In addition, EMRA is applied to the collision problem due to schema heterogeneity occurring in the process of accessing data generated in InBody.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.