• 제목/요약/키워드: Connection Detail

검색결과 225건 처리시간 0.027초

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • 국제초고층학회논문집
    • /
    • 제11권3호
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.

전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 제안 (Proposal of Connection Details for a Double Split Tee Connection Without a Shear tap)

  • 양재근;이형동;김용범;배다솔
    • 한국강구조학회 논문집
    • /
    • 제27권5호
    • /
    • pp.423-433
    • /
    • 2015
  • 상 하부 스플릿 티 접합부는 보-기둥 모멘트 접합부로써 T-stub 플랜지의 두께, 고장력볼트의 게이지 거리, 고장력볼트의 개수 및 직경 등의 영향에 따라서 상이한 거동특성을 나타낸다. 상 하부 스플릿 티 접합부는 일반적으로 접합부에 작용하는 휨모멘트는 T-stub이 지지하고 전단력은 전단탭이 지지하는 것으로 이상화되어 설계되고 있다. 그러나 중 저층 규모의 강구조물에 상 하부 스플릿 티 접합부가 적용되는 경우, 작은 규격의 보 부재가 적용될 수 있기 때문에 보 웨브에 전단탭을 설치하지 못하는 경우가 발생할 수 있다. 이 연구는 이와 같이 보 웨브에 전단탭을 설치할 수 없는 기하학적 형상을 갖는 상 하부 스플릿 티 접합부가 충분한 전단력 지지능력을 갖도록 하는 접합부 상세를 제안하기 위하여 진행하였다. 이를 위하여 상 하부 스플릿 티 접합부에 대한 3차원 비선형 유한요소해석을 수행하였다.

A Cascaded D-STATCOM Integrated with a Distribution Transformer for Medium-voltage Reactive Power Compensation

  • Lei, Ertao;Yin, Xianggen;Chen, Yu;Lai, Jinmu
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.522-532
    • /
    • 2017
  • This paper presents a novel integrated structure for a cascaded distribution static compensator (D-STATCOM) and distribution transformer for medium-voltage reactive power compensation. The cascaded multilevel converter is connected to a system via a group of special designed taps on the primary windings of the Dyn11 connection distribution transformer. The three-phase winding taps are symmetrically arranged and the connection point voltage can be decreased to half of the line-to-line voltage at most. Thus, the voltage stress for the D-STATCOM is reduced and a compromise between the voltage rating and the current rating can be achieved. The spare capacity of the distribution transformer can also be fully used. The working mechanism is explained in detail and a modified control strategy is proposed for reactive power compensation. Finally, both simulation and scaled-down prototype experimental results are provided to verify the feasibility and effectiveness of the proposed connection structure and control strategy.

플랫 플레이트 슬래브와 H형강 기둥 접합부의 구조 성능에 관한 실험적 연구 (An Experimental Study on Structural Performance of H-Steel or SRC Column and Flat Plate Slab Connection)

  • 윤명호;이윤희;유홍식;김진원
    • 복합신소재구조학회 논문집
    • /
    • 제5권2호
    • /
    • pp.9-14
    • /
    • 2014
  • Main topics in this study is a new structural detail for connection between H-Steel or SRC column and flat plate slab. We carried out to evaluate the punching shear performance of H-steel or SRC column + RC slab system for vertical load and lateral load. From the test results structural characteristics - yield moment, yield rotation, maximum moment, deformation capabilities ect. - are obtained and evaluated. In this paper as a shear reinforcement for supporting region of plate closed stirrup type and shear band are used, and their test results are compared.

Response of a steel column-footing connection subjected to vehicle impact

  • Kang, Hyungoo;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.125-136
    • /
    • 2017
  • This study investigated the performance of a steel column standing on a reinforced concrete footing when it was subjected to collision of an eight-ton single unit truck. Finite element analyses of the structure with different connection schemes were performed using the finite element model of the truck, and the results showed that the behavior of the column subjected to the automobile impact depended largely on the column-footing connection detail. Various reinforcement schemes were investigated to mitigate the damage caused by the car impact. The probability of the model reinforced with a certain scheme to reach a given limit state was obtained by fragility analysis, and the effects of the combined reinforcement methods were investigated based on the equivalent fragility scheme. The analysis results showed that the reinforcement schemes such as increase of the pedestal area, decrease of the pedestal height, and the steel plate jacketing of the pedestal were effective in reducing the damage. As the speed of the automobile increased the contribution of the increase in the number of the anchor bolts and the dowel bars became more important to prevent crushing of the pedestal.

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

컬럼-트리 형식 철골모멘트 접합부의 모델링 변수제안 (Modeling Parameters for Column-Tree Type Steel Beam-Column Connections)

  • 안희태;김태완;유은종
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.59-68
    • /
    • 2023
  • The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca;Luis Calado;Alper Kanyilmaz
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.237-252
    • /
    • 2023
  • The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.

RFID 전자기준점 일련번호 구성기법 (Generation of ID in Control-point based on RFID)

  • 남권모;차득기;이인수;김수정
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2009년도 춘계학술발표회 논문집
    • /
    • pp.133-134
    • /
    • 2009
  • This study deals with a mobile terminal without connection to a network-server-program contained detail information of control-point reading ID consisted of latitude and longitude, following directly checking location on a control-point based on RFID.

  • PDF

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.