• 제목/요약/키워드: Connecting rod bearing

검색결과 36건 처리시간 0.022초

유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 EHL 해석 (EHL Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition)

  • 김병직;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.212-217
    • /
    • 1998
  • Reynolds equation, which describes behavior of fluid film in journal bearing, basically satisfies mass conservation. But, boundary conditions usually used with this equation, e.g. half Sommerfeld or Reynolds boundary conditions, cannot fulfill this natural law of conservation. In the case of connecting rod bearing, where applied load is dynamic and its magnitude is relatively large, such unrealistic boundary conditions have serious influence on calculation results, especially on lubricant flow rate or power dissipation which are important parameters in thermal analysis. Another important factor in the analysis of connecting rod bearing is elastic deformation of bearing support structure which is relatively flexible. In this paper, EHL analysis of connecting rod beating is performed using mass-conserving boundary condition. Elastic deformation of bearing support structure and application of mass-conserving boundary condition have significant effects on the performances of connecting rod bearing.

  • PDF

온도 변화의 영향을 고려한 커넥팅 로드 베어링의 EHL 해석 (EHL Analysis of connecting Rod Bearings Considering Effects of Temperature Variation)

  • 김병직;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.114-120
    • /
    • 2000
  • EHL analysis of connecting rod bearing is proposed which includes effects of temperature variation in lubrication film. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while connecting rod big end temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication Him is absorbed by the film itself, and the remainder flows into the bearing surface. Mass-conserving cavitation algorithm is applied and the effect of variable viscosity is included to solve the Reynolds equation. Simulation results of the connecting rod bearing of internal combustion engine are presented. It is shown that the temperature variation has remarkable effects on the bearing performance. It is concluded that the EHL analysis considering effects of the temperature variation is strongly recommended to predict the bearing performance of connecting rod big end On internal combustion engine.

  • PDF

온도 변화의 영향을 고려한 커넥팅 로드 베어링의 EHL 해석 (EHL Analysis of Connecting Rod Bearings Considering Effects of Temperature Variation)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제17권3호
    • /
    • pp.228-235
    • /
    • 2001
  • EHL analysis of connecting rod bearing is proposed which includes effects of temperature variation in lubrication film. Lubrication film temperature is treated as a time-dependent, two-dimensional variable which is averaged over the film thickness, while connecting rod big end temperature is assumed to be time-independent and three-dimensional. It is assumed that a portion of the heat generated by viscous dissipation in the lubrication film is absorbed by the film itself, and the remainder flows into the bearing surface. Mass-conserving cavitation algorithm is applied and the effect of variable viscosity is included to solve the Reynolds equation. Simulation results of the connecting rod bearing in internal combustion engine are presented. It is shown that the temperature variation has remarkable effects on the bearing performance. It is concluded that the EHL analysis considering effects of the temperature variation is strongly recommended to predict the connecting rod bearing performance in internal combustion engine.

커넥팅 로드 베어링의 EHL에 관한 수치해석 (A Numerical Analysis of the Elastohydrodynamic Lubrication of Connecting Rod Bearings)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.63-71
    • /
    • 1996
  • The connecting rod bearing, which is subjected to periodical dynamic loading, is an impoRant component of the reciprocating engine. In the operation of this bearing, significant parameters are the oil film thickness and the film pressure. Peak film pressures of 20-30 MPa are not uncommon. So the elastic deformation of the bearing housing can have a significant effect on the bearing performance. In this study, a numerical analysis of connecting rod bearing is investigated. Elastic deformation of the bearing housing is considered in the analysis. Separate hydrodynamic and structural analysis are coupled through a direct iterative process. It is shown that as the result of the elastic deformation of the bearing housing, the eccentricity ratio is increased, and the minimum value of the minimum film thickness and the maximum value of the maximum film pressure are decreased. The variations of rotational speed and cylinder pressure affect the minimum film thickness and the maximum film pressure variations of the connecting rod bearing.

엔진 윤활 시스템에서 오일 압력 변동의 영향 (The Effect of Oil Pressure Fluctuation on the Engine Lubrication System)

  • 윤정의;전문수
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.44-50
    • /
    • 2002
  • The connecting rod big-end bearing is one of the most heavily loaded components of the lubrication system of high-speed combustion engines. The supply oil flow has to pass to the main bearing and the rotating crankshaft before entering the connecting rod bearing. It is common knowledge that the centrifugal forces due to the crankshaft rotation influence the oil flow to connecting rod bearing through the oil supply bore, especially, when the oil supply system to the connecting rod bearing has a 180$^{\circ}$circumferential groove via a single drilling in the crankshaft. In this case, it should be confirmed that the groove oil pressure in the main bearing is sufficient to overcome these centrifugal forces. For the purpose, the dynamic oil pressure before entering oil supply bore to the connecting rod bearing was measured instead of averaged oil pressure in main gallery. Experimental test results show that the dynamic oil pressure in the oil groove was more useful than that of main gallery. And it was also found that the oil pressure fluctuation in the groove was sensitively affected by the reduction of the main bearing clearance.

엔진 연결봉 베어링의 운동 궤적 해석 (Analysis of Journal Locus in a Connecting Rod Bearing)

  • 조명래;정진영;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.183-189
    • /
    • 1997
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocating internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations of journal motion have been derived and then the numerical integration of these equations performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotating speeds, and bearing parameters.

  • PDF

엔진 연결봉 베어링의 운동 궤적 해석 (Analysis of Journal Locus in a Connecting Rod Bearing)

  • 조명래;정진영;한동철
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.17-23
    • /
    • 1998
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocation internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations are performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotation speeds, and bearing parameters.

  • PDF

탄성유체윤활에서 작동하는 커넥팅 로드 베어링의 윤활막 거동에 관한 수치적 연구 (Numerical Analysis on the Oil Film Behaviors of Connecting Rod Bearings Based on the Elastohydrodynamic Lubrication)

  • 김청균;김한구
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.36-41
    • /
    • 2004
  • The purpose of this paper is analyzing the oil film pressure distribution and the minimum oil film thickness for a connecting rod bearing using an A VL's EXCITE program. It is very important to understand optimized oil supplying holes and oil groove dimensions for supporting sufficiently inertia forces and gas pressures from the combustion chamber for a Diesel engine. The computed results indicate that the optimized oil groove width of a bearing and oil hole of a journal are recommended for high performance of a connecting rod bearing at the elastohydrodynamic lubrication zone. These results as design parameters are very useful data for a bearing designer as a firm reference of an automotive engine.

탄성유체윤활에서 작동하는 커넥팅 로드 베어링의 윤활막 거동에 관한 수치적 연구 (Numerical Analysis on the Oil Film Behaviors of Connecting Rod Bearings Based on the Elastohydrodynamic Lubrication)

  • 김청균;김한구
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.34-34
    • /
    • 2004
  • The purpose of this paper is analyzing the oil film pressure distribution and the minimum oil film thickness for a connecting rod bearing using an A VL′s EXCITE program. It is very important to understand optimized oil supplying holes and oil groove dimensions for supporting sufficiently inertia forces and gas pressures from the combustion chamber for a Diesel engine. The computed results indicate that the optimized oil groove width of a bearing and oil hole of a journal are recommended for high performance of a connecting rod bearing at the elastohydrodynamic lubrication zone. These results as design parameters are very useful data for a bearing designer as a firm reference of an automotive engine.

EHD Analysis on Lubrication Mechanics of Connecting Rod Bearing

  • Kim, Chung-Kyun;Kim, Sung-Won;Kim, Han-Goo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.405-406
    • /
    • 2002
  • The main subject of this paper is analyzing the patterns of maximum oil film pressure and the minimum oil film thickness under various pre-conditions of geometric shape as functions of bearing groove and proceeding oil hole in the connecting rod bearing. As the major analytical tool, elastohydrodynamic lubrication analysis has been applied and two-intertwined results of maximum oil film pressure and minimum oil film thickness have been compared and analyzed using EXCITE program. From computed results, the optimal lubrication conditions as geometric shape of bearing groove and the proceeding oil hole have been investigated. This may be useful for the bearing designer as a firm reference.

  • PDF