• Title/Summary/Keyword: Conjugated linoleic acids

Search Result 118, Processing Time 0.024 seconds

Enzymatic Synthesis of Low-trans Fats Containing Conjugated Linoleic Acids and Their Physicochemical Characteristics (Conjugated Linoleic Acid(CLA)를 함유한 기능성 저트랜스 유지의 효소적 합성 및 이화학적 특성 연구)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.752-760
    • /
    • 2008
  • Scale-up production of low-trans fat containing conjugated linoleic acid (CLA-TFO) was performed through lipase-catalyzed synthesis. Blend of fully hydrogenated soybean oil, olive oil containing conjugated linoleic acid and palm oil with 1:2:7 ratio was interesterified through Lipozyme RM IM in the 1 L-batch type reactor at $65^{\circ}C$ for 12 hrs, and the physicochemical and melting properties of CLA-TFO were compared with conventional (high trans fat) or commercial low-trans fat shortening. The trans fatty acids content in the conventional shortening (48.8 area%) was much higher than that of low-trans shortening (0.4 area%) and CLA-TFO (0.3 area%+CLA; 7.6 area%). Acid, saponification and iodine values of CLA-TFO were 0.4, 173.9 and 59.0, respectively. Their ${\alpha}$-, ${\gamma}$-tocopherol contents showed 4.7, 1.0 mg/100 g. Differences were observed in the solid fat contents (SFC), melting point of the conventional or low-trans fat and CLA-TFO. Each SFC of conventional, low-trans fat and CLA-TFO was 32.0, 29.3 and 30.4% with melting point of 38.5, 43.0 and $39.5^{\circ}C$ at $35^{\circ}C$, respectively. In texture profile analysis, hardness of conventional, low-trans fat and CLA-TFO was 111.7, 75.2 and 63.8 g.

Biohydrogenation of Linoleic Acid and Stearic Acid Production by Mixed Rumen Fungi and Bacteria (반추위내 서식하는 혼합곰팡이와 박테리아에 의한 Linoleic Acid 가수소화반응과 Stearic Acid 생산에 관한 연구)

  • Nam, In-Sik
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.100-105
    • /
    • 2007
  • The objective of this study was to confirm biohydrogenation of linoleic acid and stearic acid production by mixed men fungi and bacteria. In mixed fungal biohydrogenation study, when linoleic acid solution was added to fungal culture (after 24 hr pre-incubation), all linoleic acids were converted to trans-11 vaccenic acid via cis-9, trans-11 conjugated linoleic acid production within 24 hr period of incubation. All linoleic acid solution was hydrogenated to trans-11 vaccenic acid within 24 hr incubation and this was continued until the end of incubation (48 hr). Both treatments (added linoleic acid solution or the same amount of solution without containing linoleic acid into fungal cultures) produced the similar amount of stearic acid. In contrast, 100% of linoleic acid solution was hydrogenated to stearic acid in mixed bacterial culture. It is concluded that the end product of mixed fungal biohydrogenation of linoleic acid is trans-11 vaccenic acid whereas mixed bacteria produced stearic acid as an end product of their biohydrogenation.

Preparation of Conjugated Linolenic Acid from Urea Fractionated Perilla Seed Oil Hydrolysate (우레아 분별된 들기름 가수 분해물을 이용한 Conjugated Linolenic Acid(CLnA)의 합성)

  • Lee, Kyung-Su;Shin, Jung-Ah;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1734-1742
    • /
    • 2011
  • Conjugated linolenic acid (CLnA) and conjugated linoleic acid (CLA) are positional geometric isomers with three and two double bonds, respectively. In this study, perilla seed oil containing 60% ${\alpha}$-linolenic acid (C18:3) and 30% linoleic acid (C18:2) was used as a reaction substrate. After the perilla seed oil was hydrolyzed, conjugated fatty acids were synthesized using different reaction parameters, such as reaction time and concentration of sodium hydroxide. As a result, CLnA, CLA, and other newly synthesized conjugated isomers were present at levels of 14.5%, 14%, and 42.2%, respectively, when the reaction was performed with 20% NaOH, at $180^{\circ}C$, and for 1 hr. The results of GC-MS and fourier transform infrared spectroscopy (FT-IR) showed that CLnA isomer of cis-9, trans-11, and trans-13 octadecatrienoate, CLA isomer of cis-9, trans-11, and trans-10, cis-12 octadecadienoate, and other conjugated isomers were produced. Using urea, ${\alpha}$-linolenic acid could be concentrated from perilla seed oil hydrolysate. After concentration by urea, the concentration of ${\alpha}$-linolenic acid reached about 70%. After alkaline-isomerization was performed on the urea fraction containing 70% ${\alpha}$-linolenic acid, the content of CLnA increased up to 16.6%.

Effect of Dietary Conjugated Linoleic Acid on Lipid Characteristics of Egg Yolk

  • Hur, Sun-Jin;Kang, Geun-Ho;Jeong, Jin-Yeun;Yang, Han-Sul;Ha, Yeong-Lae;Park, Gu-Boo;Joo, Seon-Tea
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1165-1170
    • /
    • 2003
  • A total of 250 laying hens were fed a diet containing 0, 1, 2.5 or 5% conjugated linoleic acid (CLA), and 5% Safflower seed oil (SSO) for 5 weeks, and eggs were collected by week to analyse lipid characteristics of egg yolk. Egg yolk from CLA-fed groups showed significant increase in CLA content with increased CLA in the diet. Dietary CLA also increased the ratio of saturated fatty acids and decreased unsaturated fatty acids in the egg yolk. The proportion of myristic, palmitic, stearic and CLA were increased, while those of oleic, linoleic, linolenic and arachidonic acid were decreased. The cholesterol content in egg yolk was significantly decreased by dietary CLA for 5 weeks feeding. After 7 days of feeding, 5% CLA-fed group showed the lowest cholesterol content in egg yolk. CLAfed groups showed significantly lower 2-thiobarbituric acid-reactive substances (TBARS) values compared to control and SSO-fed group after 14 days of storage. No significant differences in TBARS values among CLA-fed groups were observed at the 28 days of storage. Results suggested that lipid oxidation of egg yolk during cold storage could be inhibited by dietary CLA due not only to changes in fatty acid composition but also to the high concentration of CLA in egg yolk.

Antioxidative Activity of Browning Products Fractionated from Fermented Soybean Sauce (양조간장에서 분리한 갈색물질의 항산화성)

  • 최홍식;이정수;문갑순;박건영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.565-569
    • /
    • 1993
  • Antioxidative activity of browning product(BP) fractionated from fermented soybean sauce(SS) was studied during the oxidation process of linoleic acid mixture system. SSBP was a powder type product prepared from fermented soybean sauce by the fractionation through the Sephadex G-10 column and freeze drying of collected fraction. The aqueous model systems were used for the evaluation of antioxidative activity of SSBP during the oxidative reaction at $50^{\circ}C$ by the determination of peroxider and conjugated dienoic acid compounds. The linoleic acid mixture for the aqueous model systems was consisted of linoleic acid(64.6%), oleic acid(27.4%), and other acids in ethanolic phosphate buffer solution(pH 7.0). SSBP had a considerable antioxidative activity with the inhibition of formation of peroxides and conjugated dienoic acids during the autoxidation of linoleic acid mixtures in aqueous model systems. Antioxidative activity of SSBP was relatively higher than SS, however, lower than ${\alpha}-tocopherol$ and butylated hydroxyanisol. The antioxidative effect of SSBP was increased by the its concentrations from 0.05% to 0.5% in the oxidation reactions of aqueous model systems. Therefore, SSBP was considered as one of the potential natural antioxidants for the use of food products.

  • PDF

Effects of Sunflower Oil Supplementation in Cassava Hay Based-diets for Lactating Dairy Cows

  • Chantaprasarn, N.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.42-50
    • /
    • 2008
  • Twenty-four, lactating dairy cows were randomly assigned according to a Rrandomized complete block design (RCBD) to investigate the effect of sunflower oil supplementation (SFOS) with cassava hay based-diets on feed intake, digestibility of nutrients, rumen fermentation efficiency and milk production. The treatments were as follows: T1 = Control, using commercial concentrate as a supplement (CON); T2 = Concentrate with cassava hay (CHSO-0); T3 = Concentrate with cassava hay and 2.5% sunflower oil (CHSO-2.5); T4 = Concentrate with cassava hay and 5% sunflower oil (CHSO-5). The cows were offered concentrate feed at a ratio of concentrate to milk production of 1:2 and urea-treated rice straw was fed ad libitum. The results revealed that feed intake, digestibility of nutrients and ruminal pH were similar among all treatments, while ruminal NH3-N was lower (p<0.05) with SFOS. Blood urea-N (BUN) and milk urea-N (MUN) were not significantly affected by SFOS. The ruminal concentrations of volatile fatty acids were significantly different among the treatments. Sunflower oil supplementation significantly increased concentrations of unsaturated fatty acids, and ratio of unsaturated to saturated fatty acids in the milk, particularly the conjugated fatty acids, was significantly enhanced. Furthermore, production costs of treatments with sunflower oil supplementation were lower than for the control. Based on this study, SFOS in cassava hay based-diets improves rumen ecology, milk yield and milk quality, especially in terms of conjugated linoleic acids.

Effect of Conjugated Linoleic Acid on Fatty Acid Composition and Lipid Oxidation of Egg Yolk (난황내 Conjugated Linoleic Acid가 지방산 조성과 지방산화에 미치는 효과)

  • Park, Gu-Boo;Lee, Jeong-Il;Ha, Yeong-Lae;Kang,Seuck-Joong;Jin, Sang-Keun;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.18 no.4
    • /
    • pp.339-347
    • /
    • 1998
  • The effects of conjugated linoleic acid (CLA) in egg yolk on fatty acid composition and lipid oxidation during chilled storage (4$^{\circ}C$) were investigated. CLA was synthesized according to the method of alkali isomerization using safflower seed oil (SSO). A total of 250 hens (200 days of age) were fed control diet (commercial formula feed for han) or CLA-supplemented diet (1%, 2.5% and 5% CLA) or 5% SSO supplemented diet for 6 weeks, and eggs were collected for analysis of CLA, fatty acid compositons and lipid oxidation. Eggs from CLA-supplemented diets groups showed significantly (p<0.05) higher CLA content compared to those of control group. The contents of linoleic, palmitic, and myristic acid were increased as well as CLA content by feeding a CLA-supplemented diet. However, the contents of oleic and arachidonic acids in egg yolks were decreased by dietary CLA supplementation. The pH of egg yolk increased by the levels of CLA during storage. The contents of CLA were not significantly (p<0.05) changed during chilled storage for 28 days, whereas TBARS were significantly (p<0.05) increased. It is suggested that lipid oxidation of egg yolk might be affected by the levels of CLA in egg yolk due to changes in fatty acid compositions.

  • PDF

Lipase-catalyzed Production of Solid Fat Containing Conjugated Linoleic Acid in Binary Models

  • Zhu, Xue-Mei;Alim, Abdul;Hu, Jiang-Ning;Adhikari, Prakash;Lee, Jeung-Hee;Lee, Ki-Teak
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.803-807
    • /
    • 2009
  • Solid fats were esterified with solid phase of rice bran oil (S-RBO), palm stearin (PS), and conjugated linoleic acid (CLA) at 2 substrate mole ratios (S-RBO:PS:CLA of 1:1:2 and 1:3:4). The major fatty acids were palmitic, oleic, and CLA in 36 hr products. The solid fat content (SFC) of the 1:1:2 product was 12.8% while the SFC of 1:3:4 product was 45.1% at $20^{\circ}C$. The SFCs after $20^{\circ}C$ reduced when the reaction time increased from 1 to 36 hr, suggesting that the change of triacylglycerol species was augmented by extending reaction time.

Response Surface-Optimized Isolation of Essential Fatty Acids via Castor Oil Dehydration

  • Suratno, Lourentius;Imanuel, Anugerahwan;Brama, Andika;Adriana Anteng, Anggorowati;Ery Susiany, Retnoningtyas;Kiky Corneliasari, Sembiring;Wiyanti Fransisca, Simanullang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • The reaction conditions optimization, including the temperature of the reaction, amount of catalyst required, and reaction time for the linoleic acids (LAs) and conjugated linoleic acids (CLAs) production by catalytic dehydration of castor oil via saponification was investigated by response surface methodology (RSM). It was confirmed that all three parameters (temperature, time, and amount of catalyst) were influential factors in isolating LAs and CLAs. When the temperature was increased, the iodine value increased, and the reaction time and catalyst amount increased. The optimal reaction conditions were: 240 ℃, 2.2 h reaction time, and 7 wt% catalyst amount. The maximum iodine value reached 156.25 with 91.69% conversion to the essential fatty acids.

Lipid Sources with Different Fatty Acid Profile Alters the Fatty Acid Profile and Quality of Beef from Confined Nellore Steers

  • Fiorentini, Giovani;Lage, Josiane F.;Carvalho, Isabela P.C.;Messana, Juliana D.;Canesin, Roberta. C.;Reis, Ricardo A.;Berchielli, Telma T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.976-986
    • /
    • 2015
  • The present study was conducted to determine the effects of lipid sources with different fatty acids profile on meat fatty acids profile and beef quality traits of Nellore. A total of 45 Nellore animals with an average initial body weight of $419{\pm}11kg$ (at $15{\pm}2mo$) were distributed in a completely randomized design consisting of 5 treatments and 9 replicates. The roughage feed was maize silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF), and soybean grains (SG). No effects of lipid sources were observed (p>0.05) on beef color, pH, water-holding capacity, and sarcomere length. Beef from cattle fed PO had greater shear-force values (p<0.05) compared to beef from cattle fed WF. Deposition of main unsaturated fatty acids (oleic, linoleic, and linolenic) was greater in treatments WF, SG, and LO, respectively, while the values of conjugated linoleic acid (CLA) were greater when animals were fed LO. The inclusion of LO in the diet enhances the concentration of CLA in longissimus muscle and subcutaneous fat besides improving the atherogenicity index and elongase activity. As such, LO can be used with the aim to improve the quality of beef from confined Nellore cattle. Conversely, the use of PO is not recommended since it may increase the concentration of undesirable unsaturated fatty acids in muscle and subcutaneous fat, shear-force and the atherogenicity index.