• Title/Summary/Keyword: Conical Extrusion Die

Search Result 23, Processing Time 0.017 seconds

Inhomogeneous Deformation Between Construction Materials in the Cu/Al and Fe/Al Co-extrusion Processes (Cu/Al 및 Fe/Al 층상복합재료 압출공정에서 구성재료의 불균일 변형)

  • Seo, J.M.;Noh, J.H.;Min, K.H.;Hwang, B.B.;Ham, K.C.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.530-537
    • /
    • 2007
  • This paper is concerned with the analysis of plastic deformation of bimetal co-extrusion process. Two sets of material combination have been adopted for analysis, i.e. combinations of Cu/Al and Fe/Al. In the first set of material combination, the selected materials are AA 1100 aluminum alloy as hard material and CDA 110 as soft one. This type of material selection is to examine the effect of hard core and soft sleeve and vice versa on the deformation pattern in terms of plastic zone and velocity discontinuity along the contact surface between construction materials. Four different cases of co-extrusion process in terms of material combination and interference bonding were simulated to investigate the effect of material arrangement between core and sleeve, and of bonding on the plastic zones and velocity discontinuity. In the other set of material combination, model materials used as core and sleeve were AA 1100 and AISI 1010, which are relatively soft and hard, respectively. Process parameters except diameter ratio of core to sleeve material such as semi-die angle, reduction in area in global sense and die comer radius have been set constant throughout the simulation to concentrate our effort on the analysis of influence of diameter ratio on deformation behavior such as deformation zone, surface expansion, exit velocity discontinuity between composite materials, and extrusion forces.

Application of the Visioplasticity Method to the Axisymmetric Bulk Deformation Processes (축대칭소성가공에 있어서의 변형가시화법의 응용에 대한 연구)

  • Bai, Duck-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.2
    • /
    • pp.31-42
    • /
    • 1985
  • The metal flow and the strain distribution is investigated for the steady state and non-steady state bulk deformation processes by using an improved visioplasticity method which includes the effective smoothing scheme. The comparison of various smoothing schemes leads to the selection of the five- point least square smoothing method which is employed to reduce the measurement errors. As a steady state forming process experiments are carried out for axisy- mmetric forward extrusion through conical and curved dies of various area reduc- tions using Aluminum and steel billets. Axisymmetric backward extrusion is chosen for a nonsteady state forming process. In axisymmetric forward extrusion the results from visioplasticity show that the curved die of a fourth-order polynomial renders more uniform distribution of strain rates and strains. Higher reduction leads to greater strain rates at the outer side of the billet. The visioplastic observation for axisymmetric backward extrusion as a non-steady state deformation process shows the concentration of higher strain at the inner wall of the extruded product. The visioplastic results in forward extrusion are in agreement with the computed results by the finite element method. It is thus shown that the visio- plasticity combined with a smoothing technique is an effective method to determine the pattern and the distribution of strain rates and strains.

  • PDF

Characteristic Strength of $\delta$-Al$_2$O$_3$/Aluminum Composite by Rheo-compocasting (반용융 가공법에 의한 $\delta$-Al$_2$O$_3$/Aluminum 복합재료의 강도 특성)

  • 이상필;김만수;김석호;윤한기
    • Proceedings of the KWS Conference
    • /
    • 1995.04a
    • /
    • pp.155-159
    • /
    • 1995
  • A16061 alloy reinforced with 10 vol% $\delta$-A1$_2$O$_3$ short fiber have been fabricated by Rheo-compocasting and squeeze casting and extruded at high temperature using conical shape die and curved shape die with various extrusion ratios.. Tensile and hardness tests were carried out to examine mechanical properties of extruded materials and SEM observation of fractured surface was capable of accounting for fracture mechanism and bonding state of fiber and matrix.

  • PDF