지하철은 버스와 택시에 비해 많은 승객들을 안전하고 신속하게 대량 수송할 수 있는 미래 지향적인 교통수단이다. 지하철 이용자의 증가에 따른 혼잡도 증가는 지하철을 쾌적하게 이용할 수 있는 시민들의 권리를 저해하는 요인 중의 하나이다. 따라서 지하철 내의 혼잡도 예측은 승객의 이용 편의성과 쾌적성을 극대화할 수 방법 중 하나이다. 본 논문에서는 기존의 지하철 혼잡도를 다중 회귀 분석으로 예측하고 빅데이터 처리를 통한 실시간으로 혼잡도를 모니터링하고, 자신의 출발역과 도착역 정보뿐만 아니라 다양한 정보를 추가하여 개인화된 혼잡도 예측 시스템을 제안한다. 제안된 혼잡도 예측 시스템을 적용한 결과 예측혼잡도가 실제혼잡도에 비해 평균 81% 정확도를 보였다. 본 논문에서 제안한 예측 및 추천 어플리케이션을 지하철 고객에 적용하면 지하철 혼잡도 예측과 개인 사용자의 편리성에 도움이 될 것으로 예상된다.
PURPOSES : This study supports the evidence that it is possible to rehabilitate a damaged pavement with a lane closure specifically based on the Gimcheon~Sunsan project. METHODS : The prediction results from the simulation programs were compared with field monitoring, which focused on traffic management planning, congestion (length, time, and passing speed), bypass, and user cost, among others. RESULTS : The research results showed that lane closure application and pavement repair of the aged pavement in Korea were possible, even though the prediction results were minimally different from the field monitoring. The road agency contributes to service life extension of the rehabilitated pavement using this method. CONCLUSIONS : A marginal effect caused by the lane closure was observed on travelling users or vehicles, and the user cost of pavement repair decreased. Therefore, introducing the repair method or rehabilitation in Korea is possible. Information dissemination through various media was properly done to execute the project well. Moreover, the construction area traffic utilized nearby alternative roads. Therefore, improving the repaired pavemen's service life while ensuring that the pavement management agency can provide a road with comfortable user riding quality was possible.
While there are many services that can check current traffic condition and application program such as bus arrival alarm are developed, since it only provide simple alarm and check level of information, it is still insufficient in many senses. Therefore, the program that try to develop in this study is the system that predict arrival time to destination and inform the bus passengers by applying real time traffic information. The system developed related to this study is still very inadequate. In the system developed in this thesis, when the user input the current bus number and destination using smart-phone, relevant server acquire the bus route information from bus information DB, and analyze real time traffic information based on the information from traffic information DB, and inform customer of expected arrival time to destination. In this thesis, traffic congestion can be eased off and regular operation of public transportation can be improved with reliable destination arrival alarm. Also, it is considered that pattern of bus users can be analyzed by using these information, and analyzing average transport speed and time of public transportation, travel time depending on various situation can give a boost to study related to transportation information and its development.
본 연구에서는 도시부 도로의 다양한 자료를 수집하여 통행속도 변화에 대한 영향을 분석하였고, 이와 같은 빅데이터를 활용하여 GRU 기반의 단기 통행속도 예측 모형을 개발하였다. 그리고 Baseline 모형과 이중지수평활 모형을 비교 모형으로 선정하여 RMSE 지표로 예측 오차를 평가하였다. 모형 평가 결과, Baseline 모형과 이중지수평활 모형의 RMSE는 평균 7.46, 5.94값으로 각각 산출되었다. 그리고 GRU 모형으로 예측한 평균 RMSE는 5.08 값이 산출되었다. 15개 링크별로 편차가 있지만, 대부분의 경우 GRU 모형의 오차가 최소의 값을 나타내었고, 추가적인 산점도 분석 결과도 동일한 결과를 제시하였다. 이러한 결과로부터 도시부 도로의 통행속도 정보 생성 과정에서 GRU 기반의 예측 모형 적용 시 예측 오차를 감소시키고 모형 적용 속도의 개선을 기대할 수 있을 것으로 판단된다.
In new deregulated electricity market, short-term price forecasting is key information for all market players. A better forecast of market-clearing price (MCP) helps market participants to strategically set up their bidding strategies for energy markets in the short-term. This paper presents a new prediction strategy to improve the need for more accurate short-term price forecasting tool at spot market using an artificial neural networks (ANNs). To build the forecasting ANN model, a three-layered feedforward neural network trained by the improved Levenberg-marquardt (LM) algorithm is used to forecast the locational marginal prices (LMPs). To accurately predict LMPs, actual power generation and load are considered as the input sets, and then the difference is used to predict price differences in the spot market. The proposed ANN model generalizes the relationship between the LMP in each area and the unconstrained MCP during the same period of time. The LMP calculation is iterated so that the capacity between the areas is maximized and the mechanism itself helps to relieve grid congestion. The addition of flow between the areas gives the LMPs a new equilibrium point, which is balanced when taking the transfer capacity into account, LMP forecasting is then possible. The proposed forecasting strategy is tested on the spot market of the Nord Pool. The validity, the efficiency, and effectiveness of the proposed approach are shown by comparing with time-series models
실시간 교통정보는 운전자 입장에서는 항상 과거정보가 되는 특성이 있기에. 신뢰도 높은 예측교통정보 가공의 필요성은 오래전부터 제기되어 왔다. 교통류의 상태를 운전자에게 알리는 방안에는 속도, 통행시간도 있지만, 정체가 심하고 링크가 긴 구간에서는 대기행렬의 길이가 매우 효과적인 제공방안의 하나이다. 본 논문은 Kalman filter를 활용하여 대기행렬 길이를 예측하는 모델을 제안한 후, 실제 검지기 자료를 이용하여 서울 도심의 남산권 네트웍 상에 적용하였다. 5분후의 대기행렬 길이를 예측한 후 통계적으로 검증해 본 결과, 상당한 예측력을 확보할 수 있었다. 본 연구는 국내외 최초로 도심부에서 대기행렬 길이 예측을 시도하였고 실제 활용 가능성을 타진했다는데 큰 의미가 있다.
Van, Son Nguyen;Hong, Nhan Vu Thi;Quang, Dung Pham;Xuan, Hoai Nguyen;Babaki, Behrouz;Dries, Anton
ETRI Journal
/
제44권2호
/
pp.220-231
/
2022
Building smart transportation services in urban cities has become a worldwide problem owing to the rapidly increasing global population and the development of Internet-of-Things applications. Traffic congestion and environmental concerns can be alleviated by sharing mobility, which reduces the number of vehicles on the road network. The taxi-parcel sharing problem has been considered as an efficient planning model for people and goods flows. In this paper, we enhance the functionality of a current people-parcel taxi sharing model. The adapted model analyzes the historical request data and predicts the current service demands. We then propose two novel online routing algorithms that construct optimal routes in real-time. The objectives are to maximize (as far as possible) both the parcel delivery requests and ride requests while minimizing the idle time and travel distance of the taxis. The proposed online routing algorithms are evaluated on instances adapted from real Cabspotting datasets. After implementing our routing algorithms, the total idle travel distance per day was 9.64% to 12.76% lower than that of the existing taxi-parcel sharing method. Our online routing algorithms can be incorporated into an efficient smart shared taxi system.
무선 센서 네트워크는 분산처리 환경을 제공해준다. 센서 노드들은 계산 능력, 네트워크 대역폭, 전력 등이 제한된 환경에서 배치되고 스스로 네트워크를 구성하여 수집된 데이터들을 싱크노드로 전송한다. 이런 전형적인 무선 센서 네트워크에서는 네트워크 패킷들 간의 충돌이 발생하며 이로 인해 네트워크 수명이 단축된다. 클러스터링과 네트워크 내부처리는 네트워크 내부의 패킷을 줄여 문제점을 해결한다. 제한된 에너지를 가진 센서 노드가 가능한 오랫동안 동작하게 하는 것이 큰 이슈이기 때문에 많은 연구들이 에너지 절약에 중점을 두고 진행되고 있다. 하지만 본 논문에서는 프로세싱 타임라인에 기반을 둔 협력 처리 모델을 제안한다. 이 모델은 처리의 검증, 총 실행시간의 예측, 무선 센서 네트워크에서 분산 처리에 필요한 최적의 노드 개수의 결정 등을 포함한다. 제안된 모델의 정확성을 실험을 통해 나타내고, 사례 연구로 이 모델이 분산처리 어플리케이션에 사용가능함을 보인다.
산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.