• Title/Summary/Keyword: Congestion Information

Search Result 1,185, Processing Time 0.031 seconds

TCP Delayed Window Update Mechanism for Fighting the Bufferbloat

  • Wang, Min;Yuan, Lingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4977-4996
    • /
    • 2016
  • The existence of excessively large and too filled network buffers, known as bufferbloat, has recently gained attention as a major performance problem for delay-sensitive applications. Researchers have made three types of suggestions to solve the bufferbloat problem. One is End to End (E2E) congestion control, second is deployment of Active Queue Management (AQM) techniques and third is the combination of above two. However, these solutions either seem impractical or could not obtain good bandwidth utilization. In this paper, we propose a Transmission Control Protocol(TCP)delayed window update mechanism which uses a congestion detection approach to predict the congestion level of networks. When detecting the network congestion is coming, a delayed window update control strategy is adopted to maintain good protocol performance. If the network is non-congested, the mechanism stops work and congestion window is updated based on the original protocol. The simulation experiments are conducted on both high bandwidth and long delay scenario and low bandwidth and short delay scenario. Experiment results show that TCP delayed window update mechanism can effectively improve the performance of the original protocol, decreasing packet losses and queuing delay while guaranteeing transmission efficiency of the whole network. In addition, it can perform good fairness and TCP friendliness.

Modified TCP Congestion Control Algorithm to Improve Network Efficiency (네트워크 효율 향상을 위한 개선된 TCP 혼잡제어 알고리즘)

  • 최지현;김대영;김관웅;정경택;전병실
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.331-339
    • /
    • 2003
  • In this paper, we propose an modified TCP congestion control algorithm using estimated RTT with congestion window parameter CWnd. Congestion window size is controlled with memorized RTT value on the congestion status. It can avoid occurrence of frequent congestion and reduce CWnd fluctuation. From simulation results, proposed algorithm shows great improvement on network efficiency and buffer utilization compared with original TCP algorithm.

A Case Study of the Congestion Management for the Power System of the Korea Electric Power Cooperation (한전 실계통의 혼잡처리에 대한 적용사례)

  • Song, Gyeong-Bin;Im, Gyu-Hyeong;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.549-555
    • /
    • 2001
  • Due to the development of information technology, the operating power systems under the deregulated environment has the advantages of a introduction of the market function, a competition in sales and purchases of Power, as well as the difficulty of maintaining reliability on the same or high level with it in a monopolistic market. This paper presents a basic scheme of the congestion management in the Korea electricity market under the deregulated environment. We investigated some cases of the congestion management in the world and the effects of the congestion management in the power systems. A basic idea of the congestion management in the Korea is presented based on the analysis of transmission congestion management in the competitive electricity market.

  • PDF

Development of a GPS/GIS based Real-time Congestion Index for Traffic Information (교통정보제공을 위한 GPS/GIS기반의 실시간 혼잡지표개발)

  • Choi, Kee-Choo;Jang, Jeong-Ah;Jeong, Jae-Young;Shim, Sang-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.53-60
    • /
    • 2004
  • Congestion index is needed for quantifying congestion level for various areas. So far, the index has been calculated based on multiple vehicle data for specified time interval. Such being the case, it was costly to build it and the usage of it was focused on policy development and evaluation rather than on traffic information provision. This study focuses on a development on a single vehicle based congestion index which can be a representative value for link congestion level and link speed information at the same time for dual purposes of traditional usages and information provision. A new term has been added for representing real time based arterial congestion level and it has been verified on a real time basis. The index was based on single vehicle GPS data and seemed to be cost effective in deriving the index. With the help of the index, the traffic information contents can be diversified in a constructive way in providing real time traffic information for ITS area and in using congestion level determination for traditional transportation areas.

  • PDF

Different Impacts of Independent Recurrent and Non-Recurrent Congestion on Freeway Segments (고속도로상의 독립적인 반복 및 비반복정체의 영향비교)

  • Gang, Gyeong-Pyo;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.99-109
    • /
    • 2007
  • There have been few studies on the impacts of independent recurrent and non-recurrent congestion on freeway networks. The main reason is due partly to the lack of traffic data collected during those periods of recurrent and non-recurrent congestion and partly to the difficulty of using the simulation tools effectively. This study has suggested a methodology to analyze the independent impacts of the recurrent and non-recurrent congestion on target freeway segments. The proposed methodology is based on an elaborately calibrated simulation analysis, using real traffic data obtained during the recurrent and non-recurrent congestion periods. This paper has also summarized the evaluation results from the field tests of two ITS technologies, which were developed to provide drivers with real-time traffic information under traffic congestion. As a result, their accuracy may not be guaranteed during the transition periods such as the non-recurrent congestion. In summary, this study has been focused on the importance of non-recurrent congestion compared to recurrent congestion, and the proposed methodology is expected to provide a basic foundation for prioritizing limited government investments for improving freeway network performance degraded by recurrent or non-recurrent congestion.

A study on Improvement of BIS System using Bus congestion (버스 혼잡도를 이용한 BIS 시스템 개선방안 연구)

  • Joo, Young-Hwan;Lim, Seung-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.211-215
    • /
    • 2016
  • In this paper, we utilize a service provided by the existing bus information system. To improve the limitations of the bus information system the information provided to the passenger using the bus. By applying the IoT sensor network system. congestion information of the bus provided to customer. Provides information in addition to the existing bus congestion information to passengers wishing to use public transport from the smartphone app with an existing information system. The bus congestion information in addition to the existing information to passengers who want to use public transport provided in the existing information system and smartphone apps. Prevent accidents that might occur due to congestion in the bus, efficient and convenient way to propose an improved bus information system for public transport. Developed a prototype system using the IOT sensor network verified the proposed method.

An efficient the traffic control algorithm in ATM Network (ATM 망에서 효율적인 트래픽제어 알고리즘)

  • 류언무
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.112-119
    • /
    • 2000
  • In this paper, it aims at two different situation such that a preventive control which means, it never has network information in case of occurring congestion in network, and a reactive control which means, after the congestion simply happens. it is not effective to recover with congestion just because of extensive delay for an electric wave. To solve the problems, threshold is set up with buffer in multiplex system, and executes a congestion control by FBLB which is FeedBack Leaky Bucket Algorithm. As suggested by FBLB Algorithm. the outcome of performance could be compared with Buffered Leaky Bucket Algorithm.

  • PDF

LSP Congestion Control methods in ATM based MPLS on BcN

  • Kim Chul soo;Park Na jung;Ahn Gwi im;Lee Jung tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.241-249
    • /
    • 2005
  • ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QOS commitment capabilities, Traffic engineering and smooth migration for BcN in Korea. At this time, due to the comprehensive nature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffic[1,2,3,4]. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To-Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we have introduced a HTR LSP detection method using network signaling information in an ATM layer. MPLS related studies can cover LSP failures in a physical layer fault, it can not impact network congestion status. Here we will present the research results for introducing HTR LSP detection methods and control mechanisms and this mechanism can be implementing as SOC for high speed processing a packet header. We concluded that it showed faster congestion avoidance abilities with a more reduced system load and maximized the efficiency of network resources by restricting ineffective machine attempts.

Routing Congestion Driven Placement (배선밀집도 드리븐 배치)

  • Oh Eun-Kyung;Hur Sung-Woo
    • The KIPS Transactions:PartA
    • /
    • v.13A no.1 s.98
    • /
    • pp.57-70
    • /
    • 2006
  • This paper describes a new effective algorithm to estimate routing congestion and to resolve highly congested regions for a given detailed placement. The major features of the proposed technique can be summarized as follows. Firstly, if there are congested regions due to some nets which pass through the regions it can determine which cells affect those congested spots seriously and moves some of them to resolve congestion effectively. Secondly, since the proposed technique uses the ripple movement technique to move cells it resolves congestion without sacrificing wire length. Thirdly, we use an efficient incremental data structure to trace the changes in congestion and wire length as cells move. Hence, selection of cells to move could be very accurate and fast in the course of iteration. Finally, although an MST net model is used to resolve congestion in this paper, proposed technique can be work with any net model. Particularly, if proposed technique can obtain routing information from a real router, congestion can be resolved more effectively. Experimental results show that the proposed technique can resolve congestion effectively and efficiently without sacrificing wire length.

A New Congestion Control Algorithm for Improving Fairness in TCP Vegas (TCP Vegas에서 공정성 향상을 위한 혼잡제어 알고리즘)

  • Lee, Sun-Hun;Song, Byung-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.583-592
    • /
    • 2005
  • An important factor influencing the robustness of the Internet is the end-to-end TCP congestion control. However, the congestion control scheme of TCP Reno, the most popular TCP version on the Internet, employs passive congestion indication. It makes the network congestion worse. Brakmo and Peterson proposed a congestion control algorithm, TCP Vegas, by modifying the congestion avoidance scheme of TCP Reno. Many studies indicate that Vegas is able to achieve better throughput and higher stability than Reno. But there are three unfairness problems in Vegas. These problems hinder the spread of Vegas in the current Internet. In this paper, in order to solve these unfairness problems, we propose a new congestion control algorithm called TCP NewVegas. The proposed NewVegas is able to solve these unfairness problems effectively by using the variation of the number of queued packets in a bottleneck router. To evaluate the proposed approach, we compare the performance among NewVegas, Reno and Vegas. Through the simulation, NewVegas is shown to be able to achieve throughput and better fairness than Vegas.