• Title/Summary/Keyword: Conformational change

Search Result 195, Processing Time 0.027 seconds

Effects of Hexavalent Chromium on Mitochondrial Respiration of Rat Kidney and Function of Low-Molecular-Weight, Chromium-Binding Substances ($Cr^{6+}$가 흰쥐 신장세포내 미토콘드리아의 호흡에 미치는 영향과 저분자 크롬결합물질의 작용)

  • Kang, Soo-Gil;Boo, Moon-Jong;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.43-58
    • /
    • 1989
  • To investigate the effects of hexavalent chromium on mitochondrial respiration of rat kidney, various hexavalent chromium concentrations were treated, then respiration and electron transfer enzyme activities were measured. Ultrastructural changes at state IV respiration of mitochondria were also observed. Then, to investigate protective role against hexavalent chromium in the body, low-molecular-weight, chromium-binding substances (LMCr) were purified from livers of rabbits 2hr after intravenously administrated with sodium dichromate at a dose of 74mg per kg body weight. And then, respiration rates of mitochondria treated with LMCr, hexavalent chromium containing 0.7mM chromium were measured. Hexavalent chromium decreased state IV respiration rates and electron transfer enzyme activities of mitochondria, and increased labile membrane and swelling. And partial inhibitions of condensed to orthodox conformational change were observed. Respiration rates of mitochondria treated with LMCr containing 0.7mM chromium did not differ from that of the non-treated mitochondria. But respiration rates of 0.7mM hexavalent chromium-treated mitochondria decreased by 42%, compared to non-treated mitochondria. These results suggest that LMCr may play an important role in detoxification of toxic hexavalent chromium.

  • PDF

Ring Flipping of Seven-membered and Eight-membered Dithienodisila-heterocycles

  • Lee, In-Sook;Kwak, Young-Woo;Ghosh, Manikkumer;Ohshita, Joji;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.377-380
    • /
    • 2008
  • Ground state structures and ring flipping transition states of eight- and seven-membered silicon containing heterocyclic compounds such as dithienodisilacyclooctatriene and oxadithienodisilacycloheptadiene derivatives, respectively have theoretically been investigated. Although the bithienylene moiety of the derivatives does not change the ground state structures, they significantly increase the ring flipping barrier by 13-17 kcal/mol in the case of the eight-membered rings (2, 3, and 4) in comparison with that of silicon containing heterocyclic compound 6, chosen as a model. The same moiety increases the flipping barrier of seven-membered ring (5) is only slightly (3.3 kcal/mol) in comparison with that of model compound 7. Hence, it has been concluded that not only the existing ring strain of eight-membered ring but also the bithienylene moiety collectively increases the ring flipping barrier so as to prevent such conformational changes explaining anomalous NMR behaviour of dithienodisilacyclooctatriene derivatives (2-4). In contrast, the effect of substituents R1 and R2 at the olefinic carbons of the eight-membered ring on the flipping barrier turned out to be mild.

Crystal structure of the pretense domain of an ATP-independent heat shock protease HtrA

  • Kim, Dong-Young;Kim, Dong-Ryoung;Ha, Sung-Chul;Neratur K.Lokanath;Hwang, Hye-Yeon;Kim, Kyeong-Kyu
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.24-24
    • /
    • 2002
  • HtrA (high temperature requirement A), a periplasmic heat shock protein, is known to have molecular chaperone function at low temperatures and proteolytic activity at elevated temperatures. To investigate the mechanism of functional switch to pretense, we have determined the crystal structure of the N-terminal protease domain (PD) of HtrA from Thermotoga maritima. HtrA PD shares the same fold with chymotrypsin-like serine professes. However, crystal structure suggests that HtrA PD is not an active pretense at current state since its active site is not formed properly and blocked by an additional helical lid. On the surface of the lid, HtrA PD has hydrophobic patches that could be potential substrate binding sites for molecular chaperone activity. Present structure suggests that the activation of the proteolytic function of HtrA PD at elevated temperatures might occur by the conformational change.

  • PDF

Molecular Cloning and Characterization of Calumenin in Rabbit Skeletal Sarcoplasmic Reticulum

  • Jung, Dai-Hyun;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.53-53
    • /
    • 2003
  • Calumenin was previously identified as a high affinity Ca$\^$2+/ binding protein in mouse cardiac sarcoplasmic reticulum (SR). For the present study, a 48 kDa skeletal homologue of calumenin was identified by sucrose-density gradient of rabbit skeletal SR membranes, concanavalin A treatment, 2D-gel electrophoresis, $\^$45/Ca$\^$2+/ overlay, Stains-all staining, and MALDI-TOF analysis. We attempted to clone the skeletal calumenin by RT-PCR based on mouse cardiac and human calumenin sequences. The deduced amino acid sequence (315 residues) of the skeletal calumenin showed high identity to mouse cardiac calumenin (90%). As seen in the cardiac calumenin, the deduced sequence contains a 19 amino acid N-terminal signal sequence and a HDEF C-terminal sequence, a putative retrieval signal to ER. Also, the skeletal calumenin contains one N-glycosylation site, three PKC phosphorylation sites, eight casein kinase 2 phosphorylation sites, and 6 EF-hand domains. GST-calumenin showed a conformational change and increased mobility in the presence of Ca$\^$2+/ in SDS-PAGE. Three calumenin interacting proteins (ryanodine receptor 1, glycogen phosphorylase, and phosphofructo kinase) were identified by pull-down assay with GST-calumenin and solubilized SR. All the interactions were Ca$\^$2+/dependent. The present results suggest that calumenin plays an important role in Ca$\^$2+/ homeostasis of muscle cells.

  • PDF

Conformational Transition of Poly(γ-benzyl-L-glutamate)-Poly(ethylene glycol) Block Copolymers in Bulk

  • Choi, Young-Wook;Park, Young-Mi;Choo, Jae-Bum;Cho, Chong-Su;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.795-799
    • /
    • 2007
  • The bulk properties of poly(γ-benzyl-L-glutamate)-poly(ethylene glycol), PBLG-PEO, diblock copolymer were investigated. The helical transition from 7/2 to 13/5 for pure PBLG was at 120 oC while those of GE-1 and GE-2, which contain flexible PEO block 40 wt% and 60 wt% respectively, were shown at 135℃ on DSC experiments. FT-IR and XRD experiments were shown that the diblock copolymers maintained their α-helical structure in the temperature range between 25℃ and 175℃. Increasing relative size of coil part resulted in the increase of intermolecular packing distances. Due to well-maintained helical structure, lyotropic LC phases were observed for the PBLG-PEO block copolymer by the polarized optical microscope (POM). Especially, GE-3 copolymer, which has 12.5 wt% PEO contents, showed the smectic C phase. The competition of favorable aggregation energy between rod-rod and coil-coil, and unfavorable aggregation energy of rod-coil give rise to change the supramolecular structure in mixed solvent.

Changes in Kinetic Properties of $Ca^{2+}$/Calmodulin-Dependent Protein Kinase la Activated by $Ca^{2+}$/Calmodulin-Dependent Protein Kinase I Kinase (칼슘/칼모듈린-의존성 단백질 키나아제 I 키나아제에 의한 칼슘/칼모듈린-의존성 단백질 키나아제 Ia의 활성화에 따른 효소반응 특성의 변화)

  • Cho, Jung-Sook
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.773-781
    • /
    • 1997
  • The activity of $Ca^{2+}$calmodulin (CaM)-dependent protein kinase Ia (CaM kinase Ia) is shown to be regulated through direct phosphorylation by CaM kinase I kinase (CaMK IK). In the present study, three distinct CaMKIK peaks were separated from Q-Sepharose colunm chromatography of pig brain homogenate using a Waters 650 Protein Purification System. The purified CaMKIK from the major peak potently and rapidly enhanced CaM kinase Ia activity, reaching a maximal stimulation within 2min at the concentrations of 12-15nM. The activated state of CaM kinase Ia is characterized by a markedly enhanced $V_{max}4 as well as significantly decreased $K_m\;and\;K_a$ values toward peptide substrate and CaM, respectively. These observations suggest the activation process of CaM kinase Ia. The phosphorylation of CaM kinase Ia by CaMKIK may induce its conformational change responsible for the alterations in the kinetic properties, which ultimately leads to the rapid enzyme activation.

  • PDF

Detecting Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) and Inactivated TAFIa (TAFIai) in Normal and Hemophilia A Plasmas

  • Hulme, John P.;An, Seong Soo A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2009
  • Thrombin activatable fibrinolysis inhibitor (TAFI) also known as plasma procarboxypeptidase B or U is a 60 kD glycoprotein, which is the major modulator of fibrinolysis in plasma. TAFI is a proenzyme, which is activated by proteolytic cleavage to an active carboxypeptidase B-like enzyme (TAFIa, 35.8 kD) by thrombin/thrombomodulin and plasmin. Modulation of fibrinolysis occurs when TAFIa enzymatically removes C-terminal lysine residues of partially degraded fibrin, thereby inhibiting the stimulation of tissue plasminogen activator (t-PA) modulated plasminogen activation. TAFIa undergoes a rapid conformational change at $37{^{\circ}C}$ to an inactive isoform called TAFIai. Potato tuber carboxypetidase inhibitor (PTCI) was shown to specifically bind to TAFIa as well as TAFIai. In this study, a novel immunoassay TAFIa/ai ELISA was used for quantitation of the two TAFI activation isoforms TAFIa and TAFIai. The ELISA utilizes PTCI as the capture agent and a double antibody sandwich technique for the detection. Low levels of TAFIa/ai antigen levels were detected in normal plasma and elevated levels were found in hemophilia A plasmas. TAFIa/ai antigen represents a novel marker to monitor fibrinolysis and TAFIa/ai ELISA may be a valuable assay for studying the role of TAFI in normal hemostasis and in pathological conditions.

Structural characterization of HBx-interacting protein using NMR spectroscopy

  • Lee Young-Tae;Kim Byoung-Kook;Kim Key-Sun;Choi Byong-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.122-137
    • /
    • 2005
  • The hepatitis B virus X protein (HBx) is highly linked with liver diseases and the development of hepatocellular carcinoma. HBx-interacting protein (XIP) has been shown to abolish the transactivation functions of HBx. Here, we define the structural characteristics and HBx binding properties of XIP. Under physiological conditions, XIP was composed mainly of random-coils but significant helicity was induced in the hydrophobic condition. NMR spectroscopy defined the secondary structure of XIP in the presence of sodium dodecyl sulfate. Four putative helices were mapped to the amino acids 8-12, 32-38, 42-54 and 82-91. Any deletion of defined putative helices in XIP led to loss of binding to HBx, and truncated mutant lacking last putative helix decreased helicity more than that it could. Our results suggest that XIP requires its entire sequence for HBx binding and it may be under drastic conformational change when binds to HBx.

  • PDF

A Study on the Antimicrobial Activity of Microcystis aeruginosa by Redox Reaction of Cu-Zn Alloy Metal Fiber (구리-아연 합금사의 산화-환원 반응을 통한 Microcystis aeruginosa의 사멸 특성에 관한 연구)

  • Song, Ju-Yeong;Kim, Hee-Seon;Lee, Sang-Ho;Kim, Jong-Hwa;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • This study is focused on the antimicrobial activity of cyanobacteria Microcystis aeruginosa by the reduction and oxidation reaction of copper and zinc alloy metal fiber filter. Cu/Zn ion is easily makes radicals with molecular hydroperoxide. Especially, hydroperoxide radical shows strong toxicity to the strains. Plasma membrane causes conformational change when hydroperoxide radical binds to plasma membrane. Elution of copper ion from copper and zinc alloy metal fiber is detected in the cyanobacteria solution as 0.5 ppm, and that of zinc ion is 0 ppm respectively. Zinc ion is figured to form a hydroxide in the cyanobacteria solution and precipitated to form a sludge. The concentration of chlorophyll-a in the cyanobacteria solution was proved to be the index of antimicrobial level of Microcystis aeruginosa.

A Study of the Retention Behavior of Proteins in High-Performance Liquid Chromatography(II): The Effect of Salt and Temperature on Retention Behavior of Proteins in Hydrophobic Interaction Chromatography

  • Dai Woon Lee;Byung Yun Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.515-519
    • /
    • 1993
  • The retention behavior of proteins was investigated by using hydrophobic interaction chromatography (HIC), comparing to the results obtained in reversed-phase chromatography (RPC) described in the previous paper. A SynChropak propyl column was employed with 0.05 M phosphate buffer (pH 7.0) containing sodium sulfate. Conformational changes were recognized by examining Z values as a function of sodium sulfate concentration over a range of temperature between 5 and 65$^{\circ}C$. Z values did not change significantly at the range of the temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. The sign and the magnitude of ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ of proteins in HIC were compared with those obtained in RPC. The signs of ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ of proteins in HIC were all positive, while those of proteins in RPC were all negative. These results suggested that the retention of proteins in HIC and in RPC were entropy-driven and enthalpy-driven process, respectively. From the two different investigations, it was concluded that the retention mechanism of RPC and HIC was based on the same fundamental principle in which separation is dependent on hydrophobicity, but the retention behavior of the proteins in HIC is clearly different from that observed in RPC.