• Title/Summary/Keyword: Conformation

Search Result 970, Processing Time 0.024 seconds

Construction of 19F-13C Solid-State NMR Probe for 400MHz Wide-Bore Magnet

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2013
  • Various fluorine-containing materials are used in electronic devices like LCD display panels and Li-ion batteries. The structural conformation of fluorine in fluorinated materials is an important contributing factor that influences the chemical and physical properties. The conformation can be changed by heat and stress during manufacture or use. Understanding the conformational changes is critical for understanding the performance and durability of electronic devices. Solid-state NMR spectroscopy could be widely used for the analysis of various fluorine-containing materials for electronic devices. However, conventional CPMAS probes cannot be used for in-situ analysis of fluorine-containing electronic devices like LCD panels and Li-ion batteries. In this paper, we show the design, construction, and optimization of a $^{19}F-^{13}C$ double-resonance solid-state NMR probe for a 400MHz wide-bore magnet with a flat square coil for in-situ analysis of fluorine-containing electronic devices without observing fluorine background signals. This custom-built probe does not show any fluorine background signals, and can have higher efficiency for lossy samples.

Solution Structure of the D/E Helix Linker of Skeletal Troponin-C: As Studied by Circular Dichroism and Two-Dimensional NMR Spectroscopy

  • 이원태;G. M. Anatharamaiah;Herbert C. Cheung;N. Rama Krishna
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.57-62
    • /
    • 1998
  • We have synthesized a 17-residue peptide with the amino acid sequence RQMKEDAKGKSEEELAD corresponding to residues 84-100 of chicken skeletal troponin C. This stretch of the protein sequence is in the middle one-third of the 32-residue 9-turn α-helix that connects the two globular domains of the dumbell-shaped molecule and includes the D/E linker helix. We describe here the solution conformation of the helix linker as studied by circular dichroism (CD) and two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. The NOE connectivities together with the vicinal $^3J_{N{\alpha}}$ coupling constants suggest that the peptide exists in a fast conformational equilibrium among several secondary structure: a nascent helix near the N-terminus, a helix, and a substational population of extended and random coil forms. In addition, two interresidue α-α NOEs are observed suggesting a bent structure with a bend that includes the single glycine in position 92. These results are consistent with the ideas that in neutral solution the D/E linker region of the central helix in troponin C can adopt a helical conformation and the central helix may have a segmental flexibility around Gly 92.

Conformation of L-Ascorbic Acid in solution. 1. Neutral L-Ascorbic Acid

  • Shin, Young A.;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1991
  • Conformational free energy calculations using an empirical potential function and the hydration shell model (a program CONBIO) were carried out on the neutral L-ascorbic acid (AA) in the unhydrated and hydrated states. The conformational energy was minimized from starting conformations which included possible conformations of six torsion angles in the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. From the analysis of conformational free energies for AA in both states, intramolecular hydrogen bonds (HBs) are proved to be an essential factor in stabilizing the overall conformations, and cause the conformations in both states to be quite different from those in crystal. In the case of hydrated AA, there is a competition between HBs and hydration, and the hydration around the two hydroxyl groups attached to the acyclic side chain forces the molecule to form less stable HBs. The hydration affects strongly the conformational energy surfaces of AA. Several feasible conformations obtained in this work indicate that there exists an ensemble of several conformations in aqueous solution. The calculated probable conformations for the rotation about the C5-C6 bond of the acyclic side chain are trans and gauche +, which are in good agreement with results of NMR experiment.

Functional Studies of Cysteine Residues in Human Glutathione S-Transferase P1-1 by Site-Directed Mutagenesis

  • Park, Hui Jung;Lee, Gwang Su;Gong, Gwang Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • To gain further insight into the relationship between structure and function of glutathione S-transferase (GST), the four cysteine mutants, C14S, C47S, C101S and C169S, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized glutathione (GSH). The catalytic activities of the four mutant enzymes were characterized with five different substrates as well as by their binding to four different inhibitors. Cys14 seems to participate in the catalytic reaction of GST by stabilizing the conformation of the active-site loop, not in the GSH binding directly. The substitution of Cys47 with serine significantly reduces the affinity of GSH binding, although it does not prevent GSH binding. On the other hand, the substitution of Cys101 with serine appears to change the binding affinity of electrophilic substrate by inducing a conformational change of the $\alpha-helix$ D. Cys169 seems to be important for maintaining the stable conformation of the enzyme. In addition, all four cysteine residues are not needed for the steroid isomerase activity of human glutathione S-transferase P1-1.

Rates of Conformational Change of 3,3-Dimethylpiperidine and Solvent Effects on Its Conformation When Coordinated to the Paramagnetic Undecatungstocobalto(II)silicate Anion Studied by 1H NMR Spectroscopy

  • 현재원;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.961-965
    • /
    • 1997
  • 1H NMR spectra of 3,3-dimethylpiperidine (1) at -70 to 30 ℃ exhibit gradual change from slow to rapid exchange between two alternate chair forms. The exchange rate constant was determined as a function of temperature by simulating the line shape of the signal from the two methyl groups using the modified Bloch equations. The resulting free energy of activation is ΔG* = 44.4±1.9 kJ mol-1 at 298 K. The 1H NMR spectrum of a D2O or dimethylsulfoxide-d6 (DMSO-d6) solution containing 1 and [SiW11CoⅡO39]6- exhibits separate signals for the free ligand and the complex, indicating that the ligand exchange is slow on the NMR time scale. In D2O the piperidine ring is frozen as a chair form even at room temperature with the cobalt ion bonded to the axial position of the nitrogen atom. When DMSO-d6 is added to the D2O solution, the NMR spectral change suggests that a rapid exchange occurs between the chair form and another conformer. It is proposed that the conformation of ^b1^b coordinated to [SiW11CoⅡO39]6- in DMSO-d6 is close to a twist form.

Crystal Structure of 3-[4-(2-Ethoxy-2-phenylethyl)-1-piperazinyl]-2-methyl-1-phenyl-1-propanone (Eprazinone) dihydrochloride, $C_{24}H_{32}N_2O_2$·2HCl

  • Euisung Kim;Hyun Song;Choong-Souh Yun;Hyun-So Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.371-373
    • /
    • 1991
  • The crystal structure of eprazinone dihydrochloride, $C_{24}H_{32}N_2O_2$${\cdot}$2HCl, has been determined from 2102 independent reflections collected on an automated Nonious CAD-4 diffractometer using graphite-monochromated $Mo-K\alpha$ radiation. The crystals are monoclinic, space group P$2_1$/n, with unit cell dimensions a=11.381(2), b=28.318(2), c=7.840(1) $\AA$, $\beta=92.45(2)^{\circ}$, ${\mu}=2.37$ c$m^{-1}$, F(000)=968, and Z=4. Final R value is 0.071 for independent 2102 observed reflections. The molecule assumes an extended conformation. The piperazine ring has a normal chair conformation and the four carbon atom are planar with a maximum displacement of 0.004 $\AA$ for C(18) atom. The two chloride ions are hydrogen bonded to the two piperazine nitrogen atoms [N(14)${\cdot}{\cdot}{\cdot}$Cl(1); 2.986(6) $\AA$ N(17)…Cl(2); 3.084(8) $\AA$].

Structure Identification of 1,2-Disubstituted Chiral Calix[4]arene : X-Ray and NMR Analysis of 25-(3,5-Dinitrobenzoyloxy)-26-methoxy-27,28-dihydroxycalix[4]arene

  • 박영자;신정미;남계춘;김종민;국승근
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.643-647
    • /
    • 1996
  • 1,2-Disubstituted chiral calix[4]arene "25-(3,5-dinitrobenzoyloxy)-26-methoxy-27,28-dihydroxycalix[4]arene" was synthesized by the reaction of 25-(3,5-dinitrobenzoyloxy)-calix[4]arene with methyl iodide in the presence of K2CO3. Methylation was occurred at the 26-position of calix[4]arene. The partial cone conformation and 1,2-substitution were characterized based on the 1H NMR, 13C NMR and X-ray diffraction analysis. The crystal structure has been determined by X-ray diffraction method. The crystals are orthorhombic, Pbca, a=10.652(1), b=17.687(1), c=32.247(3) Å, Z=8, V=6075.4(9) Å3, Dc=1.38gcm-3. The intensity data were collected on an Enraf-Nonius CAD-4 Diffractometer with a graphite monochromated Cu-Kα radiation. The structure was solved by direct method and refined by full-matrix least-squares methods to a final R value of 0.050 for 2368 observed reflections. The molecule is in the partial cone conformation. It has two strong intramolecular hydrogen bonds of O(1D)-H…O(1C)-H…O(1B).

Crystal Structure of Thiamin Tetrahydrofurfuryl Disulfide

  • Shin, Whan-Chul;Kim, Young-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.331-334
    • /
    • 1986
  • The crystal structure of thiamin tetrahydrofurfuryl disulfide, one of the ring-opened derivatives of thiamin, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 8.704 (1), b = 11.207 (2), c = 21.260 (3) ${\AA}$ and ${\beta}$ = 92.44 (2)$^{circ}$, space group P2$_{1}$/c and Z = 4. The structure was solved by direct methods and refined to R = 0.076 for 1252 observed reflections measured on a diffractometer. The molecule assumes a folded conformation in which the pyrimidine and the tetrahydrofurfuryl rings are on the same side of the ethylenic plane. The pyrimidinyl, N-formyl and ethylenic planes are mutually perpendicular to each other and the N(3)-C(4) bond retains a single bond character. The structure is stabilized by an intramolecular N(4'${\alpha})-H{\cdots}O(2{\alpha}$) hydrogen bond. The molecules are connected via N(4'${\alpha}$)-H{\cdots}(N3')$ and O(5${\gamma})-H{\cdots}(N1')$ hydrogen bonds, forming a two-dimensional hydrogen-bonding network. The tetrahydrofurfuryl ring is dynamically disordered. The overall conformation as well as the packing mode is very similar to that of thiamin propyl disulfide.

Conformational transition of regenerated Antheraea pernyi silk fibroin sponge treated with aqueous ethanol solution and in vitro wound healing effect of wild silk fibroin solution (작잠 실크 피브로인에 의한 in vitro 상처 회복 효과 및 에탄올 처리에 따른 작잠 실크 피브로인 스폰지의 구조 전이)

  • Lee, Kwang-Gill;Jo, You-Young;Yeo, Joo-Hong;Lee, Heui-Sam;Kim, Kee-Young;Kim, Hyun-Bok;Kim, An-Sook;Kim, Seong-Gon;Kweon, HaeYong
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Regenerated Antheraea pernyi silk sponge was prepared using calcium nitrate 4 hydrate melt and examined the conformational changes treated with aqueous ethanol solution. The conformation of silk sponges was changed from random coil structure to ${\beta}$-sheet and ${\alpha}$-helix conformation with low ethanol concentration (50 ~ 70%). On the other hand, that of silk sponges with 80% ethanol treatment showed ${\beta}$-sheet ($700cm^{-1}$), ${\alpha}$-helix ($625cm^{-1}$), and random coil ($660cm^{-1}$) specific peaks. Wound healing effect in vitro was observed by cytoslective wound healing kit. Therefore, regenerated Antheraea pernyi silk sponges might be used as promising wound dressing materials.

Characterization of Tussah (Antheraea pernyi) Silk Fibroin Powder Prepared by HCI and NaOH (작잠견피브로인 분말의 제조와 그 특성)

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Lee, Yong-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Antheraea pernyi silk powder was prepared by treatment with HCl and NaOH. The degree of hydrolysis of Antheraea pernyi silk fiber was examined. The morphology and structural characteristics of Antheraea pernyi silk powder were investigated by using SEM, FTIR and X-ray diffractometer. As the concentration of HCl and NaOH and tratment temperature increased, in general, the degree of hydrolysis of Antheraea pernyi silk fiber increased. On the other hand, the degree of hydrolysis of Antheraea pernyi treated with 3 N NaOH at 120$^{\circ}C$ for 24 hr was 70 wt%, which was lower than that of 90$^{\circ}C$(83 wt%). The morphology of acid/alkali resistance fraction of Antheraea pernyi silk fibroin was transformed from fiber form to powered one with an increase of hydrolysis. The conformation of Antheraea pernyi silk powder characterized by FT-IR spectrometer and X-ray diffractometer ${\beta}$-sheet and ${\alpha}$-helix structure.

  • PDF