• Title/Summary/Keyword: Confocal microscopy

Search Result 437, Processing Time 0.026 seconds

Hanji Manufacturing from Bast Fibers of Kenaf, Hibiscus cannabinus (양마의 인피섬유를 이용한 한지제조)

  • Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.1-9
    • /
    • 2008
  • The utilization of non-woody fibers with the fast growing annual plants has occurred in the paper industry to replace wood and preserve environment of the earth. The non-woody fibers generally used for papermaking are paper mulberry, gampi, manila hemp, rice straw, bamboo, and coton linter etc.. Recently Kenaf has been spot-lighted for the same application. Kenaf is an annual plant of Hibiscus species of Malvaceae family. Kenaf, a rapid growing and high harvesting non-woody fiber plant, was identified as one of the promising fiber sources for the production of paper pulp. This study was carried out to investigate the pulping characteristics of Kenaf bast fiber for Hanji (traditional Korean paper) manufacturing by different pulping methods, such as alkali, alkali-peroxide and sulfomethylated pulpings. It was possible to make superior grade of Hanji. Especially sulfomethylated pulping was resulted in superior pulp in terms of higher yields and qualities in comparison to those of the other pulping methods. Hanji from sulfomethylated pulp was shown the highest brightness of over 60% and higher sheet strength. In addition, the morphological features of pulp fibers (pulp compositions) affect to the sheet properties. Therefore the effect of fiber distribution index(FDI) which was calculated from the data of Confocal laser scanning microscopy(CLSM) on the sheet properties of Kenaf Hanji was also discussed.

Detection of Mitochondrial Reactive Oxygen Species in Living Rat Trigeminal Caudal Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • Growing evidence suggests that mitochondrial reactive oxygen species (ROS) are involved in various pain states. This study was performed to investigate whether ROS-induced changes in neuronal excitability in trigeminal subnucleus caudalis are related to ROS generation in mitochondria. Confocal scanning laser microscopy was used to measure ROS-induced fluorescence intensity in live rat trigeminal caudalis slices. The ROS level increased during the perfusion of malate, a mitochondrial substrate, after loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), an indicator of the intracellular ROS; the ROS level recovered to the control condition after washout. When pre-treated with phenyl N-tert-butylnitrone (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (TEMPOL), malate-induced increase of ROS level was suppressed. To identify the direct relation between elevated ROS levels and mitochondria, we applied the malate after double-loading of $H_2DCF-DA$ and chloromethyl-X-rosamine (CMXRos; MitoTracker Red), which is a mitochondria-specific fluorescent probe. As a result, increase of both intracellular ROS and mitochondrial ROS were observed simultaneously. This study demonstrated that elevated ROS in trigeminal subnucleus caudalis neuron can be induced through mitochondrial-ROS pathway, primarily by the leakage of ROS from the mitochondrial electron transport chain.

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

3D Measurement System of Wire for Automatic Pull Test of Wire Bonding (Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발)

  • Ko, Kuk Won;Kim, Dong Hyun;Lee, Jiyeon;Lee, Sangjoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

Carbide Behavior in STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 온도에 따른 탄화물 거동)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2011
  • Carbide precipitation and dissolution behavior at various temperatures during heat treatment has been studied in STD11 cold working die steel through confocal scanning laser microscopy; dilatometry; and X-ray diffraction analysis. The equilibrium phase diagram and phase fractions with temperature were calculated using a FactSage program. Confocal laser microscopic observation revealed that ${\alpha}$ to ${\gamma}$ transformation temperature is near $800^{\circ}C$; M7C3 carbides melt at $1245^{\circ}C$; and the melting temperature of STD11 is near $1370^{\circ}C$. XRD results indicated that the M23C6 carbides dissolve in the matrix if austenitized at over $1030^{\circ}C$; while the M7C3 carbides remain up to $1200^{\circ}C$ although their amount decreases. The calculated equilibrium phase diagram showed good agreement with experimental results on carbide dissolution and phase transformation temperatures.

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Real-time Fluorescence Lifetime Imaging Microscopy Implementation by Analog Mean-Delay Method through Parallel Data Processing

  • Kim, Jayul;Ryu, Jiheun;Gweon, Daegab
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.6-13
    • /
    • 2016
  • Fluorescence lifetime imaging microscopy (FLIM) has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. Although analog mean-delay (AMD) method was introduced to enhance the imaging speed of commonly used FLIM based on time-correlated single photon counting (TCSPC), a real-time image reconstruction using AMD method has not been implemented due to its data processing obstacles. In this paper, we introduce a real-time image restoration of AMD-FLIM through fast parallel data processing by using Threading Building Blocks (TBB; Intel) and octa-core processor (i7-5960x; Intel). Frame rate of 3.8 frames per second was achieved in $1,024{\times}1,024$ resolution with over 4 million lifetime determinations per second and measurement error within 10%. This image acquisition speed is 184 times faster than that of single-channel TCSPC and 9.2 times faster than that of 8-channel TCSPC (state-of-art photon counting rate of 80 million counts per second) with the same lifetime accuracy of 10% and the same pixel resolution.

Application of Confocal Laser Scanning Microscopy and Fiber Distribution Index to Study Kenaf Handsheet Properties

  • Pang, Myong-Hyeok;Park, Jong-Moon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.54-59
    • /
    • 1999
  • This study was to quantify fiber distributions in thickness direction of kenaf handsheets as a fiber distribution index (FDI) and to analyze the relationship between FDI and the handsheet properties. The images of fiber distribution in z-direction were obtained by Confocal Laser Scanning Microscope (CLSM) and analyzed by image analysis technique. The proposed FDI had a good correlation with high R2 vlaues with various properties of paper, such as apparent density, scattering coefficient , burst index, tear index, tensile index, and folding endurance. The proposed FDI was shown as a good index to quantify paper properties.

  • PDF

Ultrastructural observations of vegetative cells of two new genera in the Erythropeltidales (Compsopogonophyceae, Rhodophyta): Pseudoerythrocladia and Madagascaria

  • Scott, Joseph L.;Orlova, Evguenia;West, John A.
    • ALGAE
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Two new genera of red algae, Madagascaria erythrocladioides West et Zuccarello and Pseudoerythrocladia kornmannii West et Kikuchi (Erythropeltidales, Compsopogonophyceae, Rhodophyta), were previously described using molecular analysis and confocal microscopy of isolates in laboratory culture. We examined the ultrastructure of both genera to compare with ultrastructure of other members of the class Compsopogonophyceae. Both genera had Golgi bodies not associated with mitochondria and chloroplasts with a peripheral encircling thylakoid similar to all other members of the class studied thus far. Confocal autofluorescence images showed that Madagascaria has a single round central pyrenoid while Pseudoerythrocladia has no pyrenoid. Our electron microscopic work confirms these initial observations. Tables and keys are presented that assist in interpreting cellular details of genera in the class Compsopogonophyceae.

The effect of using nanoparticles in bioactive glass on its antimicrobial properties

  • Maram Farouk Obeid;Kareim Moustafa El-Batouty;Mohammed Aslam
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.58.1-58.8
    • /
    • 2021
  • Objectives: This study addresses the effect of using nanoparticles (np) on the antimicrobial properties of bioactive glass (BAG) when used in intracanal medicaments against Enterococcus faecalis (E. faecalis) biofilms. Materials and Methods: E. faecalis biofilms, grown inside 90 root canals for 21 days, were randomly divided into 4 groups according to the antimicrobial regimen followed (n = 20; BAG-np, BAG, calcium hydroxide [CaOH], and saline). After 1 week, residual live bacteria were quantified in terms of colony-forming units (CFU), while dead bacteria were assessed with a confocal laser scanning microscope. Results: Although there was a statistically significant decrease in the mean CFU value among all groups, the nano-group performed the best. The highest percentage of dead bacteria was detected in the BAG-np group, with a significant difference from the BAG group. Conclusions: The reduction of particle size and use of a nano-form of BAG improved the antimicrobial properties of the intracanal treatment of E. faecalis biofilms