• Title/Summary/Keyword: Confocal Laser Scanning Microscope

Search Result 165, Processing Time 0.032 seconds

Effect of three different irrigation solutions applied by passive ultrasonic irrigation

  • Llena, Carmen;Forner, Leopoldo;Cambralla, Raquel;Lozano, Adrian
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.143-148
    • /
    • 2015
  • Objectives: This study evaluated the maximum depth and percentage of irrigant penetration into dentinal tubules by passive ultrasonic irrigation (PUI). Materials and Methods: Thirty extracted human teeth were instrumented and divided into three groups. According to final irrigation regimen, 5.25% sodium hypochlorite (Group A, NaOCl), 2% chlorhexidine (Group B, CHX) and saline solution (Group C, control group) were applied with Irrisafe 20 tips (Acteon) and PUI. Irrigant was mixed with 0.1% rhodamine B. Sections at 2 mm, 5 mm, and 8 mm from the apex were examined with confocal laser scanning microscopy (CLSM). The percentage and maximum depth of irrigant penetration were measured. Kruskal-Wallis test and Mann-Whitney test were performed for overall comparison between groups at each level and for pairwise comparison, respectively. Within a group, Wilcoxon test was performed among different levels. p values less than 0.05 were considered significant. Results: In all groups, highest penetration depth and percentage of penetration were observed at the 8 mm level. At 2 mm level, Groups A and B had significantly greater depths and percentages in penetration than Group C (p < 0.05), but there were no significant differences between Groups A and B. At 5 mm level, penetration depths and percentage of penetration was not significantly different among the groups. Conclusions: NaOCl and CHX applied by PUI showed similar depth and percentage of penetration at all evaluated levels.

A study of loading property of the bioactive materials in porous Ti implants (다공성 티타늄 임플란트의 생리활성물질 담지특성에 관한 연구)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.281-286
    • /
    • 2013
  • Purpose: Surface modification is important techniques in modern dental and orthopedic implants. This study was performed to try embedding of bioactive materials in porous Ti implants. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. It's diameter and height were 4mm and 20mm. Embedding process was used to suction and vacuum chamber. Loading properties of porous Ti implants were evaluated by scanning electron microscope(SEM), confocal laser scanning microscope(CLSM), and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $10.253{\mu}m$ and 17.506%. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. This porous structure can be embedded to bioactive materials. Therefore bioactive materials will be able to embedding to porous Ti implants. Bioactive materials embedding in the porous Ti implant will induced new bone faster.

Resonance May Elucidate New Bone Formation Induced by Low amplitude and High frequency Mechanical Stimuli (고주파 미세자극에 의한 뼈의 생성에 관한 모델링)

  • Yoon, Young June;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Bone is a self-assembly material. It is known that the low amplitude and high frequency mechanical stimulus, which is much less amplitude but higher frequency than those induced by the normal activity, can induce new bone formation. The vibrating resonance is employed to elucidate why new bone is formed by this kind of mechanical stimulus. For example, as 30 Hz and $5{\mu}{\epsilon}$ mechanical stimulus is applied at the wall of canaliculus (the tiny tube type pathway of bone fluid flow and the diameter of canaliculus is less than 200nm), the osteocytic cell membrane experiences $1,000{\mu}{\epsilon}$ strain due to the vibrating resonance. Two experiments will follow after this pilot study; (1) observing the MAPK pathway of osteocytes by using in-vitro cell culture and (2) visualizing the actin filament network in the osteocytes by using the imaging technique, such as confocal laser scanning microscope.

  • PDF

Evaluation of penetration depth of 2% chlorhexidine digluconate into root dentinal tubules using confocal laser scanning microscope

  • Vadhana, Sekar;Latha, Jothi;Velmurugan, Natanasabapathy
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.149-154
    • /
    • 2015
  • Objectives: This study evaluated the penetration depth of 2% chlorhexidine digluconate (CHX) into root dentinal tubules and the influence of passive ultrasonic irrigation (PUI) using a confocal laser scanning microscope (CLSM). Materials and Methods: Twenty freshly extracted anterior teeth were decoronated and instrumented using Mtwo rotary files up to size 40, 4% taper. The samples were randomly divided into two groups (n = 10), that is, conventional syringe irrigation (CSI) and PUI. CHX was mixed with Rhodamine B dye and was used as the final irrigant. The teeth were sectioned at coronal, middle and apical levels and viewed under CLSM to record the penetration depth of CHX. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests. Results: The mean penetration depths of 2% CHX in coronal, middle and apical thirds were $138{\mu}m$, $80{\mu}m$ and $44{\mu}m$ in CSI group, respectively, whereas the mean penetration depths were $209{\mu}m$, $138{\mu}m$ and $72{\mu}m$ respectively in PUI group. Statistically significant difference was present between CSI group and PUI group at all three levels (p < 0.01 for coronal third and p < 0.001 for middle and apical thirds). On intragroup analysis, both groups showed statistically significant difference among three levels (p < 0.001). Conclusions: Penetration depth of 2% CHX into root dentinal tubules is deeper in coronal third when compared to middle and apical third. PUI aided in deeper penetration of 2% CHX into dentinal tubules when compared to conventional syringe irrigation at all three levels.

Analysis of Rock Surface Roughness and Chemical Species Generation by Freeze-Thaw Experiments (동결융해 실험을 통한 암석 표면 거칠기 및 화학종 생성에 관한 분석)

  • Choi, Junghae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Rocks exposed to the surface are subject to long-term weathering, and such effects weaken their engineering stability. Especially as weathering progresses, the surface of rocks will be changed by weathering, and such surface changes will affect the engineering safety of the rock mass. In addition, the chemical species produced in the weathered rock have a direct effect on the surrounding environment or on the structure. In areas where rocks are exposed, such as mining areas, chemical species produced by weathering can have a serious impact on the surrounding natural environment. In this study, accelerated weathering experiments using freeze/thaw system were conducted on rocks that had already been weathered and fresh rocks, and surface changes of each rock were observed with confocal laser scanning microscope (CLSM), and chemical species were analyzed using IC/ICP-MS. As the weathering progressed, the surface roughness decreased, and the amount of chemical species produced increased. The results of this study can be used as basic data for evaluating engineering/environmental safety in areas where rocks are exposed.

A CONFOCAL MICROSCOPIC STUDY ON DENTINAL INFILTRATION OF ONE-BOTTLE ADHESIVE SYSTEMS AND SELF-ETCHING PRIMING SYSTEM BONDED TO CLASS V CAVITIES (제 5급 와동에서의 단일용기 상아질 접착제와 자가 산부식 접착제의 상아질에 대한 침투도 평가)

  • Kim, Hyung-Su;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.3
    • /
    • pp.257-269
    • /
    • 2002
  • Objective : The purpose of this study was to evaluate the resin infiltration into dentin of one-bottle adhesive systems and self-etching primer bonded to Class V cavities using confocal laser scanning microscope(CLSM). Material and Methods : Forty Class V cavities were prepared from freshly extracted caries-free Human teeth. These teeth were divided into two groups based on the presence of cervical abrasion: Group I, cervical abrasion : Group II, wedge-shaped cavity preparation. Resin-dentin interfaces were produced with two one-bottle dentin bonding systems-ONE COAT BOND(OCB; Coltene$^R$) and Syntac$^R$SPrint$^{TM}$(SS; VIVADENT)-, one self-etching priming system-CLEARFIL$^{TM}$ SE BOND (SB : KURARAY)- and one multi-step dentin bonding system-Scotchbond$^{TM}$Multi-Purpose (SBMP, 3M Dental Products)-as control according to manufacturers' instructions. Cavities were restored with Spectrum$^{R}$(Dentsply). Specimens were immersed in saline for 24 hours and sectioned longitudinally with a low-speed diamond disc. The resin-dentin interfaces were microscopically observed using CLSM. The quality of resin-infiltrated dentin layers were evaluated by five dentists using 0~4 scale. Results : Confocal laser scanning microscopal investigations using primer labeled with rhodamine B showed that the penetration of the primer occurred along the cavity margins. Statistical analysis using one-way ANOVA followed by Duncan's Multiple Range test revealed that the primer penetration of the group 2(wedge-shaped cavity preparation) was more effective than group 1(cervical abrasion) and that of the gingival interfaces was more effective than the occlusal interfaces. In the one-bottle dentin bonding systems, the resin penetration score of OCB was compatible to SBMP, but those of SS and self-etching priming system, SB were lower than SBMP.

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.

In Vivo Evaluation of Multi Lamellar Vesicle Liposome’s Percutaneous Absorption and Stability

  • Joung, Min-Seok;Park, Jong-Oan;Seo, Bong-Seok;Ryu, Chang-Duck
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.29-42
    • /
    • 2001
  • We had prepared MLV liposome with Hibiscus Esculentus Ext.(HEE) which have fluorescent light in order to evaluate its percutaneous absorption about hairless rat skin. Then we investigated particle size of MLV using confocal laser scanning microscope(CLSM) and transmission electron microscope(TEM), respectively. Stability of MLV liposome and penetration of MLV liposome to hairless rat skin was measured by CLSM. As a result of experiments, MLV was globular shape and the rage of particle size was 0.3-0.5$\mu\textrm{m}$ mostly. Cream-type MLV had high stability comparatively. When we treated with MLV to rat skin, skin penetration was enhanced, especially, the optimum concentration of MLV on penetration to rat skin was 10%. Optimum penetration time was 6hr-12hr. And MLV-type HEE was more effective on percutaneous absorption than HEE-cream or liposome-type HEE.

  • PDF

Effect of applied anodic current density on anodic oxidation behavior of AZ31 Mg alloy in OH-containing aqueous solution (수산화나트륨 수용액에서 AZ31 마그네슘 합금의 양극산하 거동에 미치는 인가 전류밀도의 영향)

  • Kim, Ye-Jin;Mun, Seong-Mo;Sin, Heon-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.98.2-98.2
    • /
    • 2017
  • 본 연구에서는 다양한 농도의 수산화나트륨 수용액에서 AZ31 마그네슘 합금의 양극산화 거동에 미치는 인가 전류밀도의 영향에 대해 알아보았다. 다양한 크기의 DC 전류를 인가하여 양극산화 거동을 확인하였으며, 형성된 피막의 표면구조를 optical microscope, confocal scanning laser microscope 등을 이용하여 관찰하였다. 연구결과, 인가 전류밀도에 따라 세 가지 유형의 voltage-time curve를 얻을 수 있었으며, voltage-time curve의 유형에 따라 서로 다른 피막 색상과 표면구조를 형성함을 발견하였다. 수산화나트륨 전해액에서 AZ31 마그네슘 합금의 플라즈마 전해산화 피막은 0.6 M 이상의 농도를 가진 수산화나트륨 용액에서 임계값 이상의 전류밀도를 인가하였을 경우에만 형성됨을 확인하였다.

  • PDF

Autofluorescence of artificial incipient root carious lesions

  • Lee, Hyeong-Mo;Park, Jeong-Kil;Hur, Bock
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.615-615
    • /
    • 2003
  • I. Objectives This study was performed to get some information about micromorphology of subsurface lesion of root caries by observing autofluorescence using confocal laser scanning microscope(CLSM) with minimum sample preparation. II. Materials and Methods Half-cut and 1 mm thick sample of human teeth were prepared to produce artificial root carious lesions. Incipient subsurface lesions were produced under optimal pH and saturity. The lesions were observed by polarized microscopy, CLSM, and back-scattered electron microscope(BSE). Calcium and phosphorus concentrations of the lesions were analyzed by line EDAX. (omitted)

  • PDF