• Title/Summary/Keyword: Confocal Image

Search Result 104, Processing Time 0.028 seconds

Study on the Contamination of Pseudomonas tolaasii in Oyster Mushroom (느타리버섯에서의 Pseudomonas tolaasii오염 연구)

  • 이혜영;장금일;김광엽
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.3
    • /
    • pp.232-240
    • /
    • 2001
  • One hundred twenty five bacterial isolates were obtained from the brown blotch-diseased oyster mushrooms collected from markets. Among them, 45 were determined as pathogenic bacteria and white line forming organisms(WLFO) were 6 strains and white line reaction organisms (WLRO) were 6 strains. All of the white line forming isolates were identified as Pseudomonas tolaasii which is a known pathogen of brown blotch disease of oyster mushroom by GC-MIS(Gas chromatography-microbial identification system). Six of the white line reacting organisms were identified as P. chlomraphis, P. fluorescens biotype A and type C. The rest of them were P gingeri, P. agarici, P. fluorescens biotype B, P. chloroyaphis, non-pathogenic P. tolaasii, P. putida biotype A and B etc. For spectrum of activity of tolaasin, culture filtrates from pathogenic isolates were examined by browning of mushroom tissue and pitting of mushroom caps. The weak pathogenic bacteria didn't induce browning or pitting of mushroom tissue. On the other hand, strong pathogenic isolates showed browning and pitting reaction on mushroom. An extracellular toxin produced by P. tolaasii, was investigated. The hemolysis activity test of 6 strains identified as P. tolaasii were 0.8∼0.9 at 600 nm and 3 strains of WLRO were 0.9∼1.0 and Pseudomonas app. were 1.0∼1.2. Observation of fresh mushroom tissue using confocal laser scanning microscopy was carried out for images of optical sectioning and vertical sectioning. Also images of brown blotch diseased oyster mushroom tissue after contamination P. tolaasii was obtained by CLSM.

  • PDF

Multi-focal Microscopic System Using a Fiber Bundle (광섬유 다발을 이용한 다초점 현미경)

  • Gu, Young-Mo;Ham, Hyo-Shick;Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.354-360
    • /
    • 2009
  • We have constructed and analyzed the performance of a simple fiber bundle multi-focal microscope. The microscope had a fiber bundle substituted for micro-lens array that is the core part of MMM(multi-focal multi-photon microscope). The MMM is a type of confocal microscope. To analyze the performance and characteristics of the fiber bundle multi-focal microscope, three types of samples were used: a standard grating, USAF 1951(7, 3), and 1951(7, 6). Using two polarizers and a polarizing beam splitter, we eliminated noise and got clear images. We obtained the FWHM of fiber spot images with the standard grating using two different magnifier lenses which were 63X and 20X, and found an image of the sample as a distribution of fiber spot images. For this case we used the low magnification lens, which gives denser distribution, so that we could get clearer images. In order to test the resolution of the fiber bundle multi-focal microscopic system, we used the USAF 1951 sample which has a smaller line interval than that of the standard grating. The FWHM of the line width of the image coincides well with the real line width of the USAF 1951 sample. We confirmed the performance of a fiber bundle multi-focal microscopic system which is relatively simple but has submicron resolution and is able to get 1600 images at the same time.

Use of modern microscopes in Analyzing fiber and Paper Properties( I )-Use of CLSM in Analyzing Fiber and Paper Properties- (최신 현미경을 이용한 섬유 및 종이의 성질 분석(제1보)-Confocal Laser Scanning Microscope를 이용한 섬유 밑 종이의 성질 분석-)

  • ;Keith Roy Wadhams
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.7-17
    • /
    • 1998
  • With the advent of CLSM in the end of 1980s, it has been applied to the field of pulp and paper science in various ways. This study showed the potentials of CLSM In analyzing a change of pulp fiber and paper properties before and after mechanical treatment. In particular, a quantification of internal fibrillation has been done using cross-sectional images of fibers and image analysis technique, then evaluated the effects of fiber wall delamination on fiber and paper properties. It showed that the delaminated fibers were closely associated to development of the interfiber bonding in a fiber network. The CLSM made it possible to investigate a density profile along the sheet thickness, which was created by some papermaking processes like pressing, drying and calendering. Through the attempt to observe the forming procedure of a fiber network during handsheet making, the CLSM images showed that the pressing stage was considered greatly to contribute to generation of interfiber bonding with removing a free water and partly a bound water between fibers. In addition, the CLSM could be used to illustrate not only a surface profile of paper showing the extent of smoothness or roughness, but also a density profile in a B-direction of the network. Finally it became evident that the CLSM could be used as an excellent tool to predict development in fiber and paper properties before and after mechanical treatment during papermaking processes.

  • PDF

Design of Linear Astigmatism Free Three Mirror System (LAF-TMS) for Sky Monitoring Programs

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Kim, Sanghyuk;Kim, Dae Wook;Lee, Hanshin;Lee, Kwangjo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2017
  • We report a novel design of the "linear astigmatism-free" three mirror system (LAF-TMS). In general, the linear astigmatism is one of the most dominant aberration degrading image qualities in common off-axis systems. The proposed LAF-TMS is based on a confocal off-axis three mirror system, where higher order aberrations are minimized via our numerical optimization. The system comprises three pieces of aluminum-alloy freeform mirrors that are feasible to be fabricated with current single-point diamond turning (SPDT) machining technology. The surface figures, dimensions, and positions of mirrors are carefully optimized for a LAF performance. For higher precision-positioning mechanism, we also included alignment parts: shims (for tilting) and L-brackets (for decentering). Any possible mechanical deformation due to assembly process as well as 1-G gravity, and its influence on optical performances of the system are investigated via the finite element (FE) analysis. The LAF-TMS has low f-number and a wide field of view, which is promising for sky monitoring programs such as supernova surveys.

  • PDF

3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

  • Park, Ok Kyu;Kwak, Jina;Jung, Yoo Jung;Kim, Young Ho;Hong, Hyun-Seok;Hwang, Byung Joon;Kwon, Seung-Hae;Kee, Yun
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.975-981
    • /
    • 2015
  • Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

Thermosensitive Block Copolymers Consisting of Poly(N-isopropylacrylamide) and Star Shape Oligo(ethylene oxide)

  • Lee, Seung-Cheol;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1521-1525
    • /
    • 2009
  • Thermosensitive block copolymers of ethylene oxide and N-isopropylacrylamide (NIPAM) were synthesized. A five armed star shape oligo(ethylene oxide) initiator with a cyclotriphosphazene core was prepared and used for the atom transfer radical polymerization (ATRP) of NIPAM. The lower critical solution temperatures (LCSTs) of the copolymers were 36 to 46 ${^{\circ}C}$, higher than that of PNIPAM (32 ${^{\circ}C}$), depending on their molecular weights. The copolymers were soluble in water below the LCSTs but formed micelles above the LCSTs. The thermosensitive micellization behaviors of the polymers were investigated by fluorescence spectroscopy. With increasing the temperature of an aqueous solution of P2 and pyrene above the LCST, the peak of 333 nm red-shifted to appear around 339 nm and its intensity increased significantly, indicating the micelle formation. The transfer of pyrene into the micelles was also confirmed by a confocal laser scanning microscope. The fluorescence image obtained from P2 in an aqueous pyrene solution exhibited a green emission resulting from the pyrene transferred into the micelles. Salt effects on the solubility of the copolymers in an aqueous solution were investigated. The LCST of P2 decreased sharply as the concentration of sodium chloride increased, while decreased slowly with potassium chloride.

Role of endoscopy in gastroesophageal reflux disease

  • Daniel Martin Simadibrata;Elvira Lesmana;Ronnie Fass
    • Clinical Endoscopy
    • /
    • v.56 no.6
    • /
    • pp.681-692
    • /
    • 2023
  • In general, gastroesophageal reflux disease (GERD) is diagnosed clinically based on typical symptoms and/or response to proton pump inhibitor treatment. Upper gastrointestinal endoscopy is reserved for patients presenting with alarm symptoms, such as dysphagia, odynophagia, significant weight loss, gastrointestinal bleeding, or anorexia; those who meet the criteria for Barrett's esophagus screening; those who report a lack or partial response to proton pump inhibitor treatment; and those with prior endoscopic or surgical anti-reflux interventions. Newer endoscopic techniques are primarily used to increase diagnostic yield and provide an alternative to medical or surgical treatment for GERD. The available endoscopic modalities for the diagnosis of GERD include conventional endoscopy with white-light imaging, high-resolution and high-magnification endoscopy, chromoendoscopy, image-enhanced endoscopy (narrow-band imaging, I- SCAN, flexible spectral imaging color enhancement, blue laser imaging, and linked color imaging), and confocal laser endomicroscopy. Endoscopic techniques for treating GERD include esophageal radiofrequency energy delivery/Stretta procedure, transoral incisionless fundoplication, and endoscopic full-thickness plication. Other novel techniques include anti-reflux mucosectomy, peroral endoscopic cardiac constriction, endoscopic submucosal dissection, and endoscopic band ligation. Currently, many of the new endoscopic techniques are not widely available, and their use is limited to centers of excellence.

The Impact of Calcium Depletion on Proliferation of Chlorella sorokiniana Strain DSCG150

  • Soontae Kang;Seungchan Cho;Danhee Jeong;Urim Kim;Jeongsug Kim;Sangmuk Lee;Yuchul Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1425-1432
    • /
    • 2024
  • This study analyzed the effects of Ca2+ metal ions among culture medium components on the Chlorella sorokiniana strain DSCG150 strain cell growth. The C. sorokiniana strain DSCG150 grew based on a multiple fission cell cycle and growth became stagnant in the absence of metal ions in the medium, particularly Ca2+. Flow cytometry and confocal microscopic image analysis results showed that in the absence of Ca2+, cell growth became stagnant as the cells accumulated into four autospores and could not transform into daughter cells. Genetic analysis showed that the absence of Ca2+ caused upregulation of calmodulin (calA) and cell division control protein 2 (CDC2_1) genes, and downregulation of origin of replication complex subunit 6 (ORC6) and dual specificity protein phosphatase CDC14A (CDC14A) genes. Analysis of gene expression patterns by qRT-PCR showed that the absence of Ca2+ did not affect cell cycle progression up to 4n autospore, but it inhibited Chlorella cell fission (liberation of autospores). The addition of Ca2+ to cells cultivated in the absence of Ca2+ resulted in an increase in n cell population, leading to the resumption of C. sorokiniana growth. These findings suggest that Ca2+ plays a crucial role in the fission process in Chlorella.

Recombinant Human Epidermal Growth Factor (rhEGF)-loaded Solid Lipid Nanoparticles: Fabrication and Their Skin Accumulation Properties for Topical rhEGF Delivery

  • Hwang, Hee-Jin;Han, Sunhui;Jeon, Sangok;Seo, Joeun;Oh, Dongho;Cho, Seong-Wan;Choi, Young Wook;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2290-2294
    • /
    • 2014
  • For the present study, rhEGF was encapsulated into solid lipid nanoparticles (SLNs). The SLNs were prepared by the $W_1/O/W_2$ double emulsification method combined with the high pressure homogenization method and the physical properties such as particle size, zeta-potential and encapsulation efficiency were measured. The overall particle morphology of SLNs was investigated using a transmission electron microscopy (TEM). The percutaneous skin permeation and accumulation property of rhEGF was evaluated using Franz diffusion cell system along with confocal laser scanning microscopy (CLSM). The mean particle size of rhEGF-loaded SLNs was $104.00{\pm}3.99nm$ and the zeta-potential value was in the range of -$36.99{\pm}0.54mV$, providing a good colloidal stability. The TEM image revealed a spherical shape of SLNs about 100 nm and the encapsulation efficiency was $18.47{\pm}0.22%$. The skin accumulation of rhEGF was enhanced by SLNs. CLSM image analysis provided that the rhEGF rat skin accumulation is facilitated by an entry of SLNs through the pores of skin.

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF