• Title/Summary/Keyword: Confining stress

Search Result 335, Processing Time 0.023 seconds

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

Confining Effect of an Internal Steel Tube in a Circular Hollow RC Column (원형 강관 삽입 중공 RC 기둥의 내부구속 효과 연구)

  • Han, Taek Hee;Kim, Hong Jung;Kim, Young Jong;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.565-575
    • /
    • 2006
  • When concrete is confined, its strength is enhanced by confining stress. Thus, increasing confining stress makes concrete strength higher. But a brittle failure may occur in hollow RC(Reinforced Concrete) column although its concrete is confined by transverse reinforcements. This brittle failure results from the absence of internal confinement and it decreases the strength and the ductility of a hollow RC column. To overcome this brittle failure problem, a hollow RC column which has a internal steel tube was developed. In this study, an experiment was performed to investigate the existence of to internal confinement by a settled steel tube. Thirty six specimens were tested and test results show the existence of internal confinement by the increase of concrete strength.

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

Cyclic Strength Characteristics of Soft Clay (주기적(週期的) 반복하중(反復荷重)에 의한 연약점토(軟弱粘土)의 강도특성(强度特性))

  • Ha, Kwang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.49-58
    • /
    • 1984
  • A series of cyclic triaxial tests were carried out on undisturbed samples to clarify the cyclic behavior of Bangkok(Ransit) soft clay. Based on the test results obtained from the cyclic tests employing different initial shear stress and different confining stress, the cyclic properties of clay such as shear strain development and cyclic strength were investigated. The results showed that with increase in the initial shear stress, the stress-strain curve was flattened to some extent. The cyclic strength expressed by the stress ratio was higher in the test with $1.0kgf/cm^2$ of confining stress, while the cyclic strength expressed by the deviator stress was higher in the test with $1.5kgf/cm^2$ of confining stress.

  • PDF

Effect of Stress Level on Strength Parameters of Cemented Sand (응력조건에 따른 고결모래의 강도정수 평가)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.143-151
    • /
    • 2007
  • The factors affecting the geotechnical properties of cemented sands are known to be relative density, cementation level, stress level, and particle characteristics such as particle size, shape and surface conditions. It has been widely accepted that the friction angle of cemented sands is not affected by cementation while the cohesion of cemented sands was significantly influenced by cementation. The cementation that is a critical component of the strength of cemented sands will be broken with increasing confining pressure and great caution is required in evaluating the cohesion of cemented specimens due to their fragilities. In this study, a series of drained shear tests were performed with specimens at various cementation levels and confining stresses to evaluate the strength parameters of cemented sands. From the experiments, it was concluded that the cohesion intercept of cemented sand experiences three distinctive zone(cementation control zone, transition zone, and stress control zone), as the cementation level and the confining stress varies. In addition, for accurate evaluation of the strength parameters, the level of confining stress triggering the breakage of cementation bond should be determined. In this study, the relationship between the maximum confining stresses capable of maintaining the cementation bond intact and unconfined compression strength of the cemented sand was established.

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Strength of Square Shaped CFT Stub Column Considering the Confining Effect of Concrete (콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도)

  • Hwang, Won Sup;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The squash strength and design strength are smaller than the experimental strength of square shaped concrete-filled steel tubular columns in a short concentrically loaded column. This study presents an evaluation procedure accounting for the confining effect of concrete. For the purpose of evaluating a confining effect of concrete, the 3D finite element method was used. The influence of parameters, width-thickness ratios, strength of the concrete and the yield strength of the steel, were examined. The suggested evaluation procedure that assembled three parameters was compared with previous experimental results. Also, the tendency of the confining effect of concrete was examined in the three types of load application.

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme;Sakiru Olarewaju Olagunju;Ruslan Khamitov;Alfrendo Satyanaga;Jong Kim;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2023
  • Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.

Undrained cyclic shear characteristics and crushing behaviour of silica sand

  • Wu, Yang;Hyodo, Masayuki;Aramaki, Noritaka
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This paper presents an investigation of the liquefaction characteristics and particle crushing of isotropically consolidated silica sand specimens at a wide range of confining pressures varying from 0.1 MPa to 5 MPa during undrained cyclic shearing. Different failure patterns of silica sand specimens subjected to undrained cyclic loading were seen at low and high pressures. The sudden change points with regard to the increasing double amplitude of axial strain with cycle number were identified, regardless of confining pressure. A higher cyclic stress ratio caused the specimen to liquefy at a relatively smaller cycle number, conversely producing a larger relative breakage $B_r$. The rise in confining pressure also resulted in the increasing relative breakage. At a specific cyclic stress ratio, the relative breakage and plastic work increased with the rise in the cyclic loading. Less particle crushing and plastic work consumption was observed for tests terminated after one cyclic loading. Majority of the particle crushing was produced and majority of the plastic work was consumed after the specimen passed through the phase transformation point and until reaching the failure state. The large amount of particle crushing resulted from the high-level strain induced by particle transformation and rotation.

An analytical model of the additional confining stress in a prestress-reinforced embankment

  • Fang Xu;Wuming Leng;Xi Ai;Hossein Moayedi;Qishu Zhang;Xinyu Ye
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.517-529
    • /
    • 2023
  • Using a device composed of two lateral pressure plates (LPPs) and a steel reinforcement bar to apply horizontal pressure on slope surfaces, a newly developed prestress-reinforced embankment (PRE) is proposed, to which can be adopted in strengthening railway subgrades. In this study, an analytical model, which is available of calculating additional confining stress (σH) at any point in a PRE, was established based on the theory of elasticity. In addition, to verify the proposed analytical model, three dimensional (3D) finite element analyses were conducted and the feasibility in application was also identified and discussed. In order to study the performance of the PRE, the propagation of σH in a PRE was analyzed and discussed based on the analytical model. For the aim of convenience in application, calculation charts were developed in terms of three dimensionless parameters, and they can be used to accurately and efficiently predict the σH in a PRE regardless of the embankment slope ratio and LPP side length ratio. Finally, the potential applications of the proposed analytical model were discussed.