• Title/Summary/Keyword: Confining force

Search Result 49, Processing Time 0.029 seconds

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

An Experimental Study on Splitting Bond Strength of RC Column Reinforced with External Steel-Band (스틸밴드로 외부 보강된 철근콘크리트 기둥의 부착강도에 관한 실험적 연구)

  • Kim, Chang-Sik;Yoon, Seung-Joe;Ho, Seung-Woong;Yoon, Pil-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.41-49
    • /
    • 2014
  • In order to investigation splitting bond strength of the deformed longitudinal reinforcing bars in the R C members strengthened laterally with the external steel-band, a total 9 sets of test re-bars with and without active confining force given by the external steel-band are pulled monotonically until failure. Test results indicate that the bond strength becomes higher with the increase in number of steel-band sets and their initial stress magnitude. This is due to the active confining force given by the steel-band, and passive confining forces given by the steel-band and transverse reinforcements, in which the passive confinement effect varies depending on the magnitude of active confining force. An equation to estimate the splitting bond strengths for the R C members strengthened laterally with the external steel-band is developed based on the several experimental results of the present study.

Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands

  • Lee, Sojeong;Im, Jooyoung;Cho, Gye-Chun;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.445-452
    • /
    • 2019
  • Gel-type biopolymers have recently been introduced as environmentally friendly soil binders and have shown substantial strengthening effects in laboratory experimental programs. Although the strengthening effects of biopolymer-treated sands have been verified in previous direct shear tests and uniaxial compression tests, there has been no attempt to examine shear behavior under different confining stress conditions. This study therefore aimed to investigate the strengthening effects of biopolymer-treated sand using laboratory triaxial testing with a focus on confining pressures. Three representative confining pressure conditions (${\sigma}_3=50kPa$, 100 kPa, and 200 kPa) were tested with varying biopolymer contents ($m_{bp}/m_s$) of 0.5%, 1.0%, and 2.0%, respectively. Based on previous studies, it was assumed that biopolymer-treated sand is susceptible to hydraulic conditions, and therefore, the experiments were conducted in both a hydrated xanthan gum condition and a dehydrated xanthan gum condition. The results indicated that the shear resistance was substantially enhanced and there was a demonstrable increase in cohesion as well as the friction angle when the biopolymer film matrix was comprehensively developed. Accordingly, it can be concluded that the feasibility of the biopolymer treatment will remain valid under the confining pressure conditions used in this study because the resisting force of the biopolymer-treated soil was higher than that in the untreated condition, regardless of the confining pressure.

Analysis of the Axial Force-Bending Moment Interaction for a CFT Column Considering the Confining Effect and the Material Nonlinearity of Concrete (콘크리트의 구속효과와 재료비선형을 고려한 내부 구속 CFT 기둥의 축력-모멘트 상호작용 분석)

  • Han Taek-Hee;Youm Eung-Jun;Yoon Ki-Yong;Lee Chang-Soo;Kang Jin-Ook;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.141-148
    • /
    • 2006
  • Concrete in a CFT(Concrete Filled Tube) column has enhanced strength and ductility because it is triaxially confined by a steel tube. But CFT columns are designed based on linear analyses by stress block method without the confining effect or the nonlinearity of the concrete. These make the significantly difference between the analysis results and the experimental results. Thus in this study, a nonlinear CFT column model was developed considering the confining effect on the concrete in a CFT column. This developed model was verified by experimental results from other researchers and compared with the results of various specifications. With the developed model, parametric studies were performed and the developed column model showed reasonable and accurate results.

  • PDF

Development of Design Method of Compression(SSC) Anchor (압축헝 앵커의 설계법 개발)

  • 임종철;홍석우;이태형;이외득
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • For the design of compression anchor, three things should be considered. The first is a resistance force by skin friction, the second is a tension strength of tendon, and the third is a compressive strength of grout. Especially, compressive strength of grout is the most important design parameter of compression anchor. When compression anchor is pulled out from the ground, the compressive strength of grout increases by confining pressure of ground($\sigma_{tg$). Here, $\sigma_{tg$ is the confining pressure which is produced by earth pressure at rest and by lateral expansion of grout. We call this phenomenon of increase of confining pressure "poisson effect". In this paper, the design method of compression anchor called SSC anchor and the computer program for the design are developed through compression tests of anchor body grout.ody grout.

  • PDF

Study on Affecting Factors for the Segmental Joint Behavior of Spliced Girder Bridges (분절교량 접합부 거동의 영향인자에 대한 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.9-16
    • /
    • 2019
  • Recently, precast PSC girder bridges have been widely applied for short and middle span bridges. The construction of the spliced girder bridges has been increasing to overcome the length limit of girder and transportation restrictions. In case of the spliced girder, the integrity of the segmental joints is very important to secure the structural soundness of bridge because the discontinuity on the segmental joints between adjacent segments could be vulnerable point. The study of segmental joint behavior with different influence factors of joint type, shear key installation, confining force is very important. In this research, finite element analysis and scaled model test with different shear key shapes and confining forces were carried out and the comparative study was performed to evaluate the segmental joint behavior of precast spliced PSC girder bridge. It was confirmed that the installation of shear key with height and depth ratio of 1/2~1/3 and applying of confining force of 1/2 of the concrete strength at the joint was effective in improving the integrity of segmental joint. In addition, the field loading test for existed precast spliced PSC girder bridge was performed and the measurement of the difference of deflection between adjacent segments at segmental joint was proposed as the assessment solution of the integrity of segmental joint.

Study on Shear Strength Characteristic of Steel Particle-sand Mixture Influenced by Magnetic Force (자기력이 적용된 철가루 혼합 사질토의 전단강도특성 연구)

  • Cho, Joong-Ki;Chang, Pyeong-Wook;Kim, Seong-Pil;Heo, Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.87-92
    • /
    • 2007
  • Strain-stress behavior of soil is of importance in dealing with geo-techniques which relate to bearing capacity, slope stability, earth pressure and many geo-technical problems. So understanding mechanism of the behavior and reinforcing soil to the required state has been an issue for many years. This paper presents the possibility of magnetic force in enhancing shear strength. To analyze the reinforcing effect, triaxial compression tests were performed on two sets of steel-sand mixtures, one of which is influenced by permanent magnet, NdFeB. With magnetic force under 50 kPa confining pressure, maximum shear strengths increased according to steel percentages but under 100 kPa, no significant changes in maximum shear strengths occurred. Therefore the analysis by Mohr's circles indicates that magnetic force converts the shearing characteristics of sand into those of clay.

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

A Study on Compressive Force of Reinforced Grout at the Fixed head of Compression Anchor (압축형 앵커의 선단정착부 그라우트 보강에 따른 산정에 관한 연구)

  • 임종철;이태형;홍석우
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.213-226
    • /
    • 2000
  • 지반 앵커(이하에서는 "앵커"로 칭한다)는 앵커두부, 자유부, 정착부로 나누어져 있다. 현재 주로 사용되고 있는 앵커는 지반과 앵커체 표면의 마찰저항력에 의해 지지하는 마찰방식이며, 앵커체에 발생하는 응력에 따라 크게 인장형과 압축형 앵커로 나누어진다. 그런데, 현재까지 이들 앵커의 설계 및 극한하중의 결정은 대부분이 인장형 앵커에 대한 것으로서, 긴장시 압축형 앵커의 선단정착부의 응력집중으로 이한 그라우트 압축저항에 대해서는 명확히 연구되어져 있지 않다. 본 연구에서는, 현장과 비슷한 조건에서 실내시험을 실시하여 선잔 장착부 그라우트의 보강형식에 따른 압축거동특성과 보강효과, 지반의 구속(정지와 포아송 구속)을 고려한 압축형 앵커의 선단 정착부 그라우트 압축저항력 산정식을 제안하였다.정식을 제안하였다.

  • PDF

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.