• Title/Summary/Keyword: Confinement building

Search Result 71, Processing Time 0.031 seconds

Strength and Ductility of R/C Columns with Welded Reinforcement Grids (용접된 띠철근으로 보강한 철근콘크리트 기둥의 강도와 연성)

  • ;Murat Saatcioglu;Mongi Grira
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.492-499
    • /
    • 1997
  • Experimental research was conducted to investigate structural performance of concrete columns confined with welded reinforcement grids were tested under simulated seismic loading. The columns were subjected to constant axial compression accompanied by incrementally increasing lateral deformation reversals. The results indicate thar welded reinforcement grid can be used effectively as confinement reinforcement provided that the steel used, have sufficient ductility and the welding process employed does not alter the strength and elongation characteristics of steel. The grids improved the structural performance of columns, which developed lateral drift ratios in excess of 3% with the spacing and volumetric ratio of transverse reinforcement similar to those required by the ACI 318-95 Building Code.

  • PDF

Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash

  • Wu, Chung-Hao;Chen, Chien-Jung;Lin, Yu-Feng;Lin, Shu-Ken
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.367-375
    • /
    • 2021
  • This study experimentally investigated the improvement of bond strength and durability of concrete containing high volume fly ash. Concrete mixtures made with 0%, 25% and 60% replacement of cement with class F fly ash were prepared. Water-binder ratios ranged from 0.28 to 0.72. The compressive, flexural and pullout bond strength, the resistance to chloride-ion penetration, and the water permeability of concrete were measured and presented. Test results indicate that except for the concretes at early ages, the mechanical properties, bond strength, and the durability-related chloride-ion permeability and water permeability of concrete containing high volume (60% cement replacement) fly ash were obviously superior to the concrete without fly ash at later ages of beyond 56 days. The enhanced bond strength for the high volume fly-ash concrete either with or without steel confinement is a significant finding which might be valuable for the structural application.

Experiments on the Composite Action of Steel Encased Composite Column (강재 매입형 합성기둥의 합성작용에 관한 실험)

  • Min Jin;Jung In-Keun;Shim Chang-Su;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.393-400
    • /
    • 2005
  • Steel encased composite columns have been used for buildings and piers of bridges. Since the column section for the pier is relatively larger than that of building columns, economical steel ratio needs to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bond and friction. However, the behavior of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Bond strength obtained from the tests showed considerably higher value than the design value. Confinement, mechanical interlock and stud connectors Increased the shear strength and these values can be used effectively to obtain composite action of Steel Reinforced Concrete(SRC) columns.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Effect of Bending Angle and Embedment Length on the Bond Characteristics of V-shaped Tie Reinforcement (절곡각 및 묻힘길이에 따른 V형 띠철근의 부착특성)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.465-471
    • /
    • 2015
  • This study proposed V-shaped tie bar method as an alternative of internal cross-tie for reinforced concrete columns in order to enhance the constructability and confinement effectiveness of the lateral tie bars. A total of 35 pull-out specimens were prepared with the parameters of concrete compressive strength and bending angle and embedment length of the V-shaped bar to examine the bond stress-slip relationship of the V-shaped tie bar. The bond strength of the V-shaped tie bars with the bending angle not exceeding $60^{\circ}$ was higher than the predictions obtained from the equations of CEB-FIP provision. Considering the constructability and bond behavior of the V-shpaed tie bar, the bending angle and embedment length of such bar can be optimally recommended as $45^{\circ}$ and 6db, respectively, where db is the diameter of the tie bar.

An Experimental Study on the Mechanical and Fire Resistance Properties of ECC Fire Resistance Panel (ECC내화패널의 역학 및 내화특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Kang, Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This study was based on an experiment that examines the manufacture and performance of fiber-reinforced cement composite panels. The conclusions were drawn after testing the mechanical properties and durability characteristics of fiber-reinforced mortar, and the mechanical properties and fire resistance of ECC fire resistant column panels. It was found that the fluidity of CEL fiber was lower than that of PVA and NY fiber. The amount of air increased slightly as the combination of fibers caused the number of fine pores to increase. It was found that the mechanical performance and deformability of high strength concrete could be improved through the confinement effect of ECC fire resistant column panels. Through continuous studies on the manufacturing and field construction methods of fire resistant column panels, a new PC method that eliminates weakness in the existing processes may be developed for skyscrapers.

Evaluation and Improvement of Deformation Capacities of Shear Walls Using Displacement-Based Seismic Design

  • Oh, Young-Hun;Han, Sang-Whan;Choi, Yeoh-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.55-61
    • /
    • 2006
  • RC shear walls are frequently used as lateral force-resisting system in building construction because they have sufficient stiffness and strength against damage and collapse. If RC shear walls are properly designed and proportioned, these walls can also behave as ductile flexural members like cantilevered beams. To achieve this goal, the designer should provide adequate strength and deformation capacity of shear walls corresponding to the anticipated deformation level. In this study, the level of demands for deformation of shear walls was investigated using a displacement-based design approach. Also, deformation capacities of shear walls are evaluated through laboratory tests of shear walls with specific transverse confinement widely used in Korea. Four full-scale wall specimens with different wall boundary details and cross-sections were constructed for the experiment. The displacement-based design approach could be used to determine the deformation demands and capacities depending on the aspect ratio, ratio of wall area to floor plan area, flexural reinforcement ratio, and axial load ratio. Also, the specific boundary detailing for shear wall can be applied to enhance the deformation capacity of the shear wall.

Analysis of Nonlinear Seismic Behavior of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details (특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 비선형 내진거동 해석)

  • Yoon, Sung-Joon;Lee, Kihak;Chun, Young-Soo;Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • In this paper, analytical models for reinforced concrete shear wall systems designed based on Korean Building Code (KBC2009) are proposed, which have special and semi-special seismic details and are compared with experimental results for a verification of analytical models. In addition, semi-special seismic details aimed to improve constructability and enhance economic efficiency were proposed and evaluated. The analytical models were performed based on nonlinear static and dynamic analysis. Through the nonlinear analyses, two seismic details showed the similar seismic behavior from the cyclic test and the analytical models for the two different seismic details represented the behavior in terms of the initial stiffness, maximum strength and strength degradation. And newly proposed seismic details(semi-special) provided with similar hysterestic behavior as well as the maximum drift.

Seismic behavior of fiber reinforced cementitious composites coupling beams with conventional reinforcement

  • Liang, Xingwen;Xing, Pengtao
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2018
  • Fiber reinforced cementitious composites (FRCC) materials that exhibit strain-hardening and multiple cracking properties under tension were recently developed as innovative building materials for construction. This study aims at exploring the use of FRCC on the seismic performance of coupling beams with conventional reinforcement. Experimental tests were conducted on seven FRCC precast coupling beams with small span-to-depth ratios and one ordinary concrete coupling beam for comparison. The crack and failure modes of the specimens under the low cycle reversed loading were observed, and the hysteretic characteristics, deformation capacity, energy dissipation capacity and stiffness degradation were also investigated. The results show that the FRCC coupling beams have good ductility and energy dissipation capacities compared with the ordinary concrete coupling beam. As the confinement stirrups and span-to-depth ratio increase, the deformation capacity and energy dissipation capacity of coupling beams can be improved significantly. Finally, based on the experimental analysis and shear mechanism, a formula for the shear capacity of the coupling beams with small span-to-depth ratios was also presented, and the calculated results agreed well with the experimental results.

Expression characteristic of pop art in Jean-Charles de Castelbajac's works (Jean-Charles de Castelbajac 작품에 나타난 팝아트의 표현 특성)

  • Kim, Sun Young
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.5
    • /
    • pp.688-701
    • /
    • 2014
  • This study examined the expression characteristics in pop art works of Jean-Charles de Castelbajac. The study here aimed at possibility to find a design development in building up the unique art world of creativity based on popularity, artistry, and originality without confinement to the trend only. For the research method, review of literature and analysis about Castelbajac's works reflecting the pop art feature in the collections from 2000S/S to 2012F/W were performed. The results of research are as follows. The external expression form of Castelbajac's works based on pop art was grouped roughly into use of mass culture image, appropriation of pop art expression technique, and parody of art works. First, his work appeared as application of the mass culture image such as symbolic thing in the modern consumer society, object in an ordinary life, character of well-known animation, national flag and famous star. Second, such appropriated pop art techniques showed as pop color in strong primary color and silk screen, photomontage, collage, assemblage, graffiti, and lettering. Third, a variety of images featured earlier in art works were shown in parody. These works are valuable in that they are expressed aesthetically through regeneration of popular culture's various images in view of fashion, they are described in the non-traditional value with frolic resistance and deviation out of existing fashion norm, and they are given the dynamic creativity integrated with art and fashion.