• Title/Summary/Keyword: Confined

Search Result 2,294, Processing Time 0.028 seconds

Evaluation of Seismic Performance for an Internally Confined Hollow CFT Column (내부 구속 중공 CFT 기둥의 내진 성능 평가)

  • Han, Taek Hee;Kim, Sung Nam;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Column tests were performed for a new type of column, the internally confined hollow concrete filled tube column (ICH CFT column), to evaluate its seismic performance. The seismic performances for two types of ICH CFT columns and a general solid RC column were evaluated and compared by quasi-static tests. The displacements and the lateral loads of column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, damage indices were calculated from recorded data. From the test results, the ICH CFT column shows superior seismic performances with double moment capacity and larger energy absorbing capacity over that of a solid RC column.

The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet (탄소섬유쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축실험)

  • Park, Jai Woo;Hong, Young Kyun;Hong, Gi Soup;Lee, Seoung Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.311-320
    • /
    • 2009
  • This paper presents the experimental results of an experiment on the current rectangular CFT columns and rectangular CFT columns additionally confined by carbon fiber sheets(CFS) under axial loading. The main experimental parameters were the layer numbers of the CFS and the depth-to-thickness ratio. Nine specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, the load-axial deformation curve, the maximum axial strength, and the deformation capacity of the CFT columns and the confined CFT columns were compared. Finally, it was seen that the maximum axial strengths of the CFT increased more significantly than that of the current CFT columns because of delayed local buckling.

Orientation and deformation of FENE dumbbells in confined microchannel and contraction flow geometry

  • Song, Sun-Jin;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong;Yeo, Jong-Kee
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.147-156
    • /
    • 2007
  • The orientation and deformation of polymer chains in a confined channel flow has been investigated. The polymer chain was modeled as a Finitely Extensible Nonlinear Elastic (FENE) dumbbell. The Brownian configuration field method was extended to take the interaction between the flow and local chain dynamics into account. Drag and Brownian forces were treated as anisotropic in order to reflect the influence of the wall in the confined flow. Both Poiseuille flow and 4 : 1 contraction flow were considered. Of particular interest was molecular tumbling of polymer chains near the wall. It was strongly influenced by anisotropic drag and high shear close to the wall. We discussed the mechanism of this particular behavior in terms of the governing forces. The dumbbell configuration was determined not only by the wall interaction but also by the flow type of the geometric origin. The effect of extensional flow on dumbbell configuration was also discussed by comparing with the Poiseuille flow.

Texture and Microstructure in AA3004 after Continuous Confined Strip Shearing (CCSS 변형된 AA 3004 판재의 집합조직과 미세조직)

  • 김훈동;정영훈;황병복;최호준;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • A new deformation process termed "continuouis confined sup shearing" (CCSS) has been developed for shear deformation of metallic sheets. The tools of CCSS were designed to provide a constant shear deformation of the order of 0.5 per pass while preserving the original sheet shape. In order to clarify the evolution of texture and microstructure during CCSS, strips of the aluminum alloy AA3004 were deformed by CCSS in up to three passes. FEM results indicated that CCSS provides a quite uniform shear deformation at thickness layers close to the strip center, although the deformation is not homogeneous in the die channel, in particular at the surface layers. The rolling texture of the initial sheet decreased during CCSS, and preferred orientations along two fibers developed. However, with an increasing number of CCSS passes the deformation texture did not develop futher. The evolution of annealing textures depended on the number of CCSS passes. A strong {112}<110> component in the deformation texture led to the formation of a strong {111}<112) orientation in the annealing texture. Observations by TEM and EBSD revealed the formation of very fine grains of ∼1.0$\mu\textrm{m}$ after CCSS.

  • PDF

Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils (불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향)

  • Kim, Sangrae;Ki, Jaehong;Kim, Youngjin;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Experimental behaviours of steel tube confined concrete (STCC) columns

  • Han, Lin-Hai;Yao, Guo-Huang;Chen, Zhi-Bo;Yu, Qing
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.459-484
    • /
    • 2005
  • In recent years, the use of steel tube confined concrete (STCC) columns has been the interests of many structural engineers. The present study is an attempt to study the monotonic and cyclic behaviours of STCC columns. For the monotonic behaviours, a series of tests on STCC stub columns (twenty one), and beam-columns (twenty) were carried out. The main parameters varied in the tests are: (1) column section types, circular and square; (2) tube diameter (or width) to thickness ratio, from 40 to 162, and (3) load eccentricity ratio (e/r), from 0 to 0.5. For the cyclic behaviours, the test parameters included the sectional types and the axial load level (n). Twelve STCC column specimens, including 6 specimens with circular sections and 6 specimens with square sections were tested under constant axial load and cyclically increasing flexural loading. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes. It was found that STCC columns exhibit very high levels of energy dissipation and ductility, particularly when subjected to high axial loads. Generally, the energy dissipation ability of the columns with circular sections was much higher than those of the specimens with square sections. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes such as AIJ-1997, AISCLRFD- 1994, BS5400-1979 and EC4-1994.

Flexural Behavior of High-Strength Concrete Beams Confined with Stirrups in Pure Bending Zone

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Yong-Gon;Kim, Sung-Soo;Kim, Jong-Hoe
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The purpose of this study is to establish flexural behavior of high-strength concrete beams confined in the pure bending zone with stirrups. The experiment was carried out on full-scale high-strength reinforced concrete beams, of which the compressive strengths were 40 MPa and 70 MPa. The beams were confined with rectangular closed stirrups. Test results are reviewed in terms of flexural capacity and ductility. The effect of web reinforcement ratio, longitudinal reinforcement ratio and shear span to beam depth ratio on ductility are investigated. The analytic method is based on finite element method using fiber-section model, which is known to define the behavior of reinforced concrete structures well up to the ultimate state and is proven to be valid by the verification with the experimental results above. It is found that confinement of concrete compressive regions with closed stirrups does not affect the flexural strength but results in a significantly increased ductility. Moreover, the ductility tends to increase as the quantity of stirrups increases by reducing the spacing of stirrups.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania

  • Bilgin, Huseyin;Huta, Ergys
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.599-614
    • /
    • 2018
  • This study focuses on the earthquake performance of two URM buildings having typical architectural configurations common for residential use constructed per pre-modern code in Albania. Both buildings are unreinforced clay brick masonry structures constructed in 1960 and 1984, respectively. The first building is a three-storey unreinforced one with masonry walls. The second one is confined masonry rising on five floors. Mechanical characteristics of masonry walls were determined based on experimental tests conducted according to ASTM C67-09 regulations. A global numerical model of the buildings was built, and masonry material was simulated as nonlinear. Pushover analyses are carried out to obtain capacity curves. Displacement demands were calculated according to Eurocode 8 and FEMA440 guidelines. Causes of building failures in recent earthquakes were examined using the results of this study. The results of the study showed that the URM building displays higher displacement and shear force demands that can be directly related to damage or collapse. On the other hand, the confined one exhibits relatively higher seismic resistance by indicating moderate damage. Moreover, effects of demand estimation approaches on performance assessment of URM buildings were compared. Deficiencies and possible solutions to improve the capacity of such buildings were discussed.