• Title/Summary/Keyword: Configuration Model

Search Result 1,945, Processing Time 0.028 seconds

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Numerical Analysis of Runup and Wave Force Acting on Coastal Revetment and Onshore Structure due to Tsunami (해안안벽과 육상구조물에서 지진해일파의 처오름 및 작용파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Yeh, Harry;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.289-301
    • /
    • 2009
  • In this work, wave run-up heights and resultant wave forces on a vertical revetment due to tsunami (solitary wave) are investigated numerically using a numerical wave tank model called CADMAS-SURF (CDIT, 2001. Research and Development of Numerical Wave Channel (CADMAS-SURF). CDIT library, No. 12, Japan.), which is based on a 2-D Navier-Stokes solver, coupled to a volume of fluid (VOF) method. The third order approximate solution (Fenton, 1972. A ninth-order solution for the solitary wave. J. of Fluid Mech., Vol. 53, No.2, pp.257-271) is used to generate solitary waves and implemented in original CADMAS-SURF code. Numerical results of the wave profiles and forces are in good agreements with available experimental data. Using the numerical results, the regression curves determined from the least-square analysis are proposed, which can be used to determine the maximum wave run-up height and force on a vertical revetment due to tsunami. In addition, the capability of CADMAS-SURF is demonstrated for tsunami wave forces acting on an onshore structure using various configuration computations including the variations of the crown heights of the vertical wall and the position of the onshore structure. Based on the numerical results such as water level, velocity field and wave force, the direct effects of tsunami on an onshore structure are discussed.

The Study for EV Charging Infrastructure connected with Microgrid (마이크로그리드와 연계된 전기자동차 충전인프라에 관한 연구)

  • Hun Shim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • In order to increase the use of electric vehicles (EVs) and minimize grid strain, microgrid using renewable energy must take an important role. Microgrid may use fossil fuels such as small diesel power, but in many cases, they can be supplied with energy from renewable energy, which is an eco-friendly energy source. However, renewable energy such as solar and wind power have variable output characteristics. Therefore, in order to meet the charging and discharging energy demands of electric vehicles and at the same time supply load power stably, it is necessary to review the configuration of electric vehicle charging infrastructure that utilizes diesel power or electric vehicle-to-grid (V2G) as a parallel energy source in the microgrid. Against this background, this study modelized a microgrid that can stably supply power to loads using solar power, wind power, diesel power, and V2G. The proposed microgrid uses solar power and wind power generation as the primary supply energy source to respond to power demand, and determines the operation type of the load's electric vehicles and the rotation speed of the load synchronous machine to provide stable power from diesel power for insufficient generations. In order to verify the system performance of the proposed model, we studied the stable operation plan of the microgrid by simulating it with MATLAB /Simulink.

A Study on Real-time Autonomous Driving Simulation System Construction based on Digital Twin - Focused on Busan EDC - (디지털트윈 기반 실시간 자율주행 시뮬레이션 시스템 구축 방안 연구 - 부산 EDC 중심으로 -)

  • Kim, Min-Soo;Park, Jong-Hyun;Sim, Min-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.

Configuration of Premium Mobility Customer's Experience Using a Critical Incident Technique (결정적 사건기법을 이용한 프리미엄 모빌리티 고객의 이용경험 구성요인 분석)

  • Jeong, Hyein;Hong, Seokpyo;Chung, Namho
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.135-153
    • /
    • 2024
  • With the recent emergence of smart tourist cities, premium mobility is being considered an important means of transportation in the tourism. However, there has been insufficient research conducted on the experience of premium mobility among its users. Accordingly, this study used CIT to analyze the components of the user experience of customers who used premium mobility. In order to specifically identify the factors that make up the premium mobility experience, 366 cases of satisfaction and 13 cases of dissatisfaction were collected through a total of 273 online surveys. As a result of the study, based on the customer's experience using premium mobility, CIT was applied to derive 6 categories and 9 sub-factors that constitute the perception of premium mobility. In particular, this study is different from existing studies in that convenience was added as a new category out of the 6 categories, and wide ride comfort and high price were derived as new sub-factors among the 9 sub-factors. Because of this, it has academic significance. Therefore, if scales suitable for quantitative research are developed based on the derived constructs, they could be widely applied to various topics related to premium mobility in the tourism field.

Current Status and Perspective of Smart Vegetable Seedling Production Technology in the Republic of Korea (국내 스마트 채소 육묘 기술 개발 현황 및 전망)

  • Dong Hyeon Kang;So Young Lee;Hey Kyung Kim;Sewoong An
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2024
  • In this study, we summarized the definition of smart vegetable seedling production technology, analysis of smart seedling production system, a hardware and software configuration model for smart seedling production system, research and development trends in smart seedling production system, and proposed future research and development plans for smart seedling production technology. Smart vegetable seedling production is a data-based seedling production, management, and distribution system that utilizes 4th Industrial Revolution technology to improve seedling productivity and quality. The production of vegetable seedlings using smart seedling production technology can be efficiently managed by collecting, analyzing, and managing information on seedlings, environment, and tasks at each stage of production by linking with the smart seedling integrated management system. However, there is still a lack of standardization of seedling standards and quality for each vegetable crop to establish smart seeding production technology, as well as development of smart seedling production element technology, which requires national wide R&D support.

Development of Wireless Measurement System for Bridge Using PDA and Fiber Optical Sensor (PDA와 광섬유 센서를 이용한 교량의 무선계측 시스템 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-OK
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.88-96
    • /
    • 2009
  • This study proposes a wireless measurement system that is a new safety management system by using an FBG sensor and a PDA. The sensor part has many advantages of implementing a wireless measurement system, and the study emploies an FBG-LVDT sensor, FBG-STRAIN sensor, FBG-TEMP sensor, and FBG-ACC sensor, using FBG sensors. Also, the study show a configuration of a signal process system for operating a wireless transmission system of FBG sensors applied to the signal process system, and engrafted the cutting edge information technology industry in order to display from a remote distance using a PDA. In order to verify the applicability of the developed FBG sensors and wireless measurement monitoring system to the field, their accuracy, and usability, the study has conducted a static and dynamic test to a bridge in the field. The study made an assessment of service for the vibration of the bridge by applying dynamic data measured by an FBG-LVDT sensor and FBG-ACC sensor to Meister's curve and prepared methods for assessing the vibration of the bridge by proposing a standard of vibration limitation given the service of vibration of the bridge. As a follow up for this study, it would be necessary to set up an overall model for the standard of service assessment established in this study.

Stereoscopic depth of surfaces lying in the same visual direction depends on the visual direction of surface features (표면 요소의 시선방향에 의한 동일시선 상에 놓여있는 표면의 입체시 깊이 변화)

  • Kham Keetaek
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.1-14
    • /
    • 2004
  • When two objects are tying in the same visual direction there occurs abrupt depth change between two objects, which is against the assumption of the computational model for stereopsis on the surfaces in a natural scene. For this reason, this stimulus configuration is popularly used in the studies for the effectiveness of the constraints employed in the computational model. Contrary to the results from two nails (or objects) tying in the same visual direction, the two different surfaces from random-dot stereogram (RDS) in the same situation can be seen simultaneously in the different depth. The seemingly contradictory results between two situations my reflect the different strategies imposed by binocular mechanism for each situation during binocular matching process. Otherwise, the surfaces tying in the same visual direction is not equivalent situation to two objects tying in the same visual direction with regards to matching process. In order to examine above possibilities, the stereoscopic depth of the surface was measured after manipulating the visual direction of the surface elements. The visual direction of each dot pair from different surfaces in RDS (in Experiment 1) or the visual direction of line (hawing rectangle with regard to that of the vertical line (in Experiment 2) was manipulated. The stereoscopic depth of the surface was found to be varied depending on visual direction of the surface elements in both RDS and line hawing stimulus. Similar to the results from two nails situation depth of the surface was greatly reduced when each surface element was tying in the same visual direction as that of the other surface element or the other object. These results suggest that binocular mechanism imposes no different strategy in resolving correspondence problem in both two objects and two surfaces situation. And the results were discussed in the context of usefulness of the constraints employed in the computational model for stereopsis.

  • PDF

An Analysis of Middle school Technology Teachers' Stage of Concerns about Maker Education By Concerns-Based Adoption Model (관심기반수용모형(CBAM)에 의한 중학교 기술교사의 메이커 교육 관심도 분석)

  • Kang, Sang-Hyun;Kim, Jinsoo
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.104-122
    • /
    • 2019
  • In the era of the fourth industrial revolution, maker education is drawing attention as a method of student-led education. At a time when interest in maker education is also growing in technology education, figuring out what stage of concern(SoC) a middle school technology teacher is critical to effective implementation. This study analyzed SoC in maker education by layer sampling among 400 middle school technology teachers using Concerns-based adoption model. SoC was then obtained by measuring the origin using the SoCQ and then presenting it as a SOCQ profile. Gender, training experience with two lower variables were analyzed using t verification, working cities, teaching experience with more than three lower variables were analyzed using one-way ANOVA. Studies showed that SoC in maker education of middle school technology teachers showed the most similar characteristics to that of non-users. The difference in concern depending on gender was that male teachers were more concerned in maker education than female teachers. The difference in concern depending on the working city was that teachers working in the township were more concerned in the maker education than teachers working in the large city, and the difference in concern depending on the teaching career was higher among teachers with middle experience than those with low and high experience. There was also a higher stage of concern in maker education than in teachers without training experience. Therefore, it is necessary to provide middle school technology teachers with an introduction to the maker education and various information, teaching, learning and evaluation data to enhance overall concern and to support the use and evaluation of the maker education in the classroom by providing various teacher training and consulting on the maker education in the future. Further, through further study, we should conduct study that analyzes both Stage of Concern, Level of Use and Innovation Configuration, to put in the effort for effective settlement of maker education.

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.