• Title/Summary/Keyword: Configuration Design of Afterbodies

Search Result 2, Processing Time 0.021 seconds

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • Park, Jong-Chun;Kang, Dae-Hwan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.49-55
    • /
    • 2003
  • When a body with slant angle after its shoulder is moving at high speed, the turbulent motion around the afterbody is generally associated with the flaw separation and determines the normal component of the drag. By changing the slant angle of afterbody, there exists a critical angle at which the drag coefficients change drastically. Understanding and control of the turbulent separated flows are of significant importance for the design of optimal configuration of the moving bodies. In the present paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies with slant angle. By basis of understanding the structure of turbulent flaw around the body, the new configuration of afterbodies are designed to reduce the drag of body and the nonlinear effects due to the interaction between the body configuration and the turbulent separated flows are investigated by use of the developed LES technique.

  • PDF

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.