• Title/Summary/Keyword: Cone factor

Search Result 158, Processing Time 0.021 seconds

Modelling the rheological behaviour of fresh concrete: An elasto-viscoplastic finite element approach

  • Chidiac, S.E.;Habibbeigi, F.
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.97-110
    • /
    • 2005
  • Rheological behaviour of fresh concrete is an important factor in controlling concrete quality. It is recognized that the measurement of the slump is not a sufficient test method to adequately characterize the rheology of fresh concrete. To further understand the slump measurement and its relationship to the rheological properties, an elasto-viscoplastic, 2-D axisymmetric finite element (FE) model is developed. The FE model employs the Bingham material model to simulate the flow of a slump test. An experimental program is carried out using the Slump Rate Machine (SLRM_II) to evaluate the finite element simulation results. The simulated slump-versus-time curves are found to be in good agreement with the measured data. A sensitivity study is performed to evaluate the effects of yield stress, plastic viscosity and cone withdrawal rate on the measured flow curve using the FE model. The results demonstrate that the computed yield stress compares well with reported experimental data. The flow behaviour is shown to be influenced by the yield stress, plastic viscosity and the cone withdrawal rate. Further, it is found that the value of the apparent plastic viscosity is different from the true viscosity, with the difference depending on the cone withdrawal rate. It is also confirmed that the value of the final slump is most influenced by the yield stress.

A Study on the Analysis of Smoke Density Characteristics for Wood-Plastic Composites (합성목재의 연기밀도특성 분석에 관한 연구)

  • Shin, Baeg-Woo;Song, Young-Ho;Rie, Dong-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.119-124
    • /
    • 2011
  • In this study, we measured the smoke density characteristics to find the fire risk of Wood-Plastic composites (WPCs) which are one of spotlighting materials for landscape architecture and residential construction material with the cone calorimeter tester (by ISO 5660-2) and the smoke density tester (by ASTM E 662). In addition, the identical test was implemented to compare the smoke density characteristics between the red pine and the antiseptic wood. The result of cone calorimeter test showed that emissions of carbon monoxide, carbon dioxide and total smoke production rate of WPCs were higher than those of red pine and antiseptic wood. And the result of smoke density test showed that maximum specific optical smoke density(Dm) of WPCs was higher than that of red pine and antiseptic wood as well.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Anti-inflammatory Activity of Cone from Red Pine (Pinus densiflora)

  • Choi, Ji-Soo;Sung, Ji-Ho;Jang, Tae-Won;Mun, Jeong-Yun;Im, Jong-Yun;Park, Jae-Ho
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.119-119
    • /
    • 2019
  • Pinus densiflora, the Korean Red Pine, is the predominant tree species of the cool, temperate forests of northeast Asia, occurring in pure stands across Korea, Japan, and parts of northern China and Russia. Pinus densiflora leaves, pollen, and bark have been widely used for traditional medicine, or edible purposes. However, pine cones contain many bioactive phytochemicals, but they are rarely used as natural raw materials. This study was conducted to evaluated the anti-inflammatory effect of pine cone extracts and its possbility of natural sources were evaluated. Pine cones were extracted with 80% methanol, concentrated and then partitioned with ethyl acetate, and the organic layer was used as a sample. The Pine cone Ethyl acetate Fraction (PEF) showed no toxicity to RAW 264.7 cells at a concentration of less than $50{\mu}g/ml$. PEF inhibited the production of nitric oxide (NO) in RAW 264.7 cells treated with lipopolysaccharide (LPS). Also, It suppressed the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and transcription of nuclear factor-kappa B (NF-${\kappa}B$). These results suggest that pine cones can be used as an effective natural material for anti-inflammatory agent.

  • PDF

Bearing capacity factor Nγ for a rough conical footing

  • Khatri, Vishwas N.;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.205-218
    • /
    • 2009
  • The bearing capacity factor $N_{\gamma}$ is computed for a rough conical footing placed over horizontal ground surface. The axisymmetric lower bound limit analysis formulation, in combination with finite elements and linear programming, proposed recently by the authors is used in this study. The variation of $N_{\gamma}$ with cone apex angle (${\beta}$), in a range of $30^{\circ}-180^{\circ}$, is obtained for different values of ${\phi}$; where ${\phi}$ is soil friction angle. For ${\phi}<30^{\circ}$, the magnitude of $N_{\gamma}$ is found to decrease continuously with an increase in ${\beta}$ from $30^{\circ}$ to $180^{\circ}$. On the other hand, for ${\phi}>30^{\circ}$, the minimum magnitude of $N_{\gamma}$ is found to occur generally between ${\beta}=120^{\circ}$ and ${\beta}=150^{\circ}$. In all the cases, it is noticed that the magnitude of $N_{\gamma}$ becomes maximum for ${\beta}=30^{\circ}$. For a given diameter of the cone, the area of the plastic zone reduces generally with an increase in ${\beta}$. The obtained values of $N_{\gamma}$ are found to compare quite well with those available in literature.

Risk factors for external root resorption of maxillary second molars associated with third molars

  • Choi, Jinwoo
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.289-294
    • /
    • 2022
  • Purpose: This study aimed to evaluate the diagnostic performance of panoramic images compared to cone-beam computed tomography (CBCT) imaging for maxillary third molar (M3)-associated external root resorption (ERR), and to identify the risk factors of ERR on panoramic images. Materials and Methods: The study population was composed of all patients who underwent panoramic imaging at Dankook University Dental Hospital from May to October 2019. In total, 397 cases of maxillary M3s in 247 patients(147 men and 100 women) were included. The diagnostic accuracy of ERR in panoramic images compared to CBCT images was evaluated using the chi-square test. To identify risk factors for ERR, dental records and panoramic findings were evaluated by logistic regression analysis. Results: The diagnostic accuracy of ERR on panoramic images was 0.79 compared to CBCT images (P<0.05). Superimposition of M3s onto second molars (M2) was associated with an approximately 33 times higher risk of ERR than separated M3s(P<0.05). Impacted M3s showed a 5 times higher risk of ERR than erupted M3s(P<0.05). Conclusion: ERR related to M3s is a common clinical condition, and superimposition of M3 onto M2 on panoramic images was the most important risk factor for ERR. It seemed that CBCT examinations for maxillary M3s might be indicated for ERR diagnosis especially if panoramic radiographs show superimposition of M3 onto M2. Impaction itself was also a risk factor, and it should be carefully examined.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

Evaluation of CPTu Cone Factors for Busan Clay Using Pore Pressure Ratio (간극수압비를 이용한 부산점토의 CPTu 콘계수 추정)

  • Hong, Sung-Jin;Lee, Moon-Joo;Kim, Tai-Jun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • Cone factors, $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$, for estimating undrained shear strength of Busan clay are evaluated in this study. For this, CPTu and field vane tests are performed for clay layers at two sites, Busan new-port and Noksan, and also $CK_0U$ triaxial tests with undisturbed samples taken from the same site are carried out. From experimental results, it is observed that the undrained shear strengths of clay increases with depth, and the undrained shear strength obtained from triaxial tests is 1.5 times higher than one obtained from vane tests. The normalized undrained shear strengths of Busan clay from triaxial and vane shear tests are $0.26{\sim}0.44$ and $0.20{\sim}0.23$, respectively. In CPTu results, cone tip resistance ($q_c$) and pore pressure ($u_2$) linearly increase with depth, and the pore pressure ratio ($B_q$) of Busan clay is within the range of $0.3{\sim}1.0$. The cone factors, which are determined by comparing the CPTu results with $CK_0U$ triaxial and vane shear test results, are found to be $5{\sim}20$ and $10{\sim}35$, respectively. It is also observed that the cone factors are inversely proportional to the pore pressure ratio. From this, the prediction methods for evaluating the cone factors of Busan clay are developed.

A Study on the Curing Properties of Kevlar/Epoxy Prepreg (케블라/에폭시 프리프레그의 경화특성에 관한 연구)

  • 제갈영순;이원철;권오혁;윤남균;임길수;안종기;박경준
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • The studies on the formulation and curing behaviors of Kevlar/Epoxy prepreg for NOSE CONE of aircraft were presented in this paper. Dielectrometer and differential scanning calorimeter were used in order to check the curing behaviors. This prepreg showed the lowest ionic viscosity around $120^{\circ}C$, and then the ionic viscosity was gradually increased up to $200^{\circ}C$. This indicated that the curing reaction of this prepreg started at $120^{\circ}C$ and the molecular weight was increased by the accelerated thermal cross-linking reaction. The loss factor and tan $\delta$ values were also measured and discussed. The loss factor behaviors of Kevlar/Epoxy prepreg, which is related to the fluidity of matrix, were fecund to be similar with that of ionic viscosity. The thermal reaction properties of this prepreg were also studied by differential scanning calorimeter.

  • PDF

The change of spray characteristics on hydraulic acoustic wave influence and prediction of low combustion instability (수력파동에 의한 분무변화 및 저주파 연소불안정에의 영향 예측)

  • Kim, Tae-Kyun;Lee, Sang-Seung;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.152-160
    • /
    • 2004
  • Studies to investigate the influence on hydraulic acoustic wave were conducted using pressure swirl atomizer under making frequency range from 0 to 60Hz using water as a propellant. Pressure oscillation from hydraulic sources gives a strong influences on atomization and mixing processes. The ability to drive these low frequency pressure oscillations makes spray characteristics changeable. The effect of pressure perturbation and its spray characteristics showed that low injector pressure with pressure pulsation gives more significantly than high injector pressure with pressure perturbation in SMD, spray cone angle, breakup length. Moreover, this data could be used for prediction of low combustion instability getting G factor.

  • PDF