• Title/Summary/Keyword: Conductor Loss

Search Result 219, Processing Time 0.032 seconds

Design of Levitation Magnet with Thermal Analysis (열해석을 이용한 자기부상자석의 설계)

  • Bae, Duck-Kweon;Sung, Ho-Kyung;Yoon, Yong-Soo;Bae, Jun-Han;Jho, Jeong-Min;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1185-1186
    • /
    • 2007
  • The UTM-01 developed in 1998 was the first maglev vehicle in Korea for the urban transit maglev (UTM) system. Through the improvement of UTM-01 and development of UTM02, the commercialization of the UTM system is being prepared now. In order to prepare for the commercialization of maglev, it is necessary that an optimal design of the levitation magnet should be provided for the safe operation of the vehicle. The levitation force is formed through the function of magnetic flux density on the top of magnet poles and gap between magnet pole and guide rail. To generate a magnetic field that is high enough to levitate the vehicle, ferromagnetic materials, such as pure iron for magnet pole and SS400 for guide rail, were used. The heat generated by $I^2R$ loss of magnet conductor makes the thermal convection on the surface of magnet including coil and poles. As these two characteristics are nonlinear phenomena, this paper deals with the nonlinear analysis on the magnetic and thermal properties of the U-type levitation magnet by using 3-D finite element method (FEM). Base on the analysis results, a small scale U-type magnet was designed, manufactured, and tested and it was verified that the magnet manufactured was satisfactory to all the design specifications.

  • PDF

Preparation of Vanadium Dioxide by Hydrogen Reduction of Vanadium Pentoxide and its Thermochromic Properties (오산화바나듐의 수소 환원에 의한 이산화바나듐의 제조 및 열변색 특성)

  • Choi, Seung Hoon;Lee, Chun Boo
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.61-66
    • /
    • 2017
  • Vanadium Dioxide has been investigated for use as a "spectrally-selective" window coating to block infrared transmission and reduce the loss of building interior heat through windows. The preparation of thermochromic $VO_2$ powder by the reductive reaction with hydrogen was studied. The reductive reaction method has many advantages of easy and mass production of $VO_2$ powder according to controlled reaction without semi-conductor equipments like sputter and beam evaporator. The reaction temperature, time, concentration of reductive gas, post-annealing condition and W addition as dopant would affect the characterization of $VO_2$ powder and its thermochromism. Many applications for electrical device and energy-saving technologies is expected.

An Analysis in Optimum Coupling Method of Cylindrical Dielectric Resonator Filter Designed by Non-decaying Mode Analysis (Non-decaying 모드 해석을 이용해서 설계한 원통형 유전체 공진기 여파기의 최적 결합 방법에 대한 분석)

  • Lee, Won-Hui;Park, Chang-Won;Kim, Tai-Shin;Hur, Jung;Lee, Sang-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.7
    • /
    • pp.14-21
    • /
    • 2001
  • In this paper, we designed and fabricated C-band bandpass filter using dielectric resonators. From waveguide cutoff frequency which applied the region between adjacent dielectric resonators, the height of cavity is determined. The cavity's diameter is determined to the twice of dielectric resonator? diameter considering the conductor loss. The resonant frequency of the DR cavity is calculated with non decaying mode analysis. Conventionally, cylindrical dielectric resonator is analysed by Cohn's model which use the decaying mode in the region between dielectric resonator wall and circular cavity wall, which is an approximated method. The external quality factor, $Q_{ex}$ has found with simulation result using Ansoft's Maxwell simulation tool. The designed filter using dielectric resonators with dielectric constant of 45 has the passband center at 5.065GHz. The bandpass filter using dielectric resonators has about 1dB insertion loss, 20MHz bandwidth and more than 30dB attenuation at $f_0+15MHz$.

  • PDF

A Study on Three-phase Imbalance of a Power Transmission Line due to Installation of a Passive Loop Conductor (수동루프에 의한 송전선로 상불평형 발생에 관한 연구)

  • 김종형;신명철;최상열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-38
    • /
    • 2003
  • Among mitigation techniques for electric and magnetic field (EMF) from an overhead transmission line a passive loop is a way that can be cheap and easily installed on the existing towers and have a satisfactory effect as well. However current induced in the passive loop causes transmission power loss and the phase imbalance increases since geometrical asymmetry of the transmission lines becomes larger. So in order to evaluate the power loss and the phase imbalance due to a passive loop, this paper represent a 345[kV] 1-circuit flat type transmission line as asymmetrical 3-phase distributed parameter line model where the effect of a passive loop is embedded in the line parameters, and then formulates differential equations. By solving these equations voltages and currents of each phase at receiving end become known. We find out that power losses occur differently at each phase and positive sequence component decreases at receiving end while negative sequence component increase. In general phase imbalance due to a passive loop is slight, but it increases in proportional to the induced current and length of section where the passive loop is installed. Thus the phase imbalance should be included in terms of cost for introducing a passive loop.

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

A Study on the Design and Fabrication of a Dual-Ground and Broad-band Internal Antenna for 4th-Generation Mobile Communications (4세대 이동통신용 이중접지 내장형 광대역 안테나의 설계와 제작에 관한 연구)

  • Park, Jung-Ryul;Choi, Byoung-Ha;Kong, Jin-Woo;Yun, Hyun-Su;Kim, Gue-Chol
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.100-108
    • /
    • 2008
  • In this paper, the dual-ground, high-gain and broad-band internal antenna has been designed and fabricated for 4th-generation mobile communication applications. The optimized antenna was fabricated using photolithography method. The antenna consist of the patches, antenna and system ground, and a probe. The patch and ground plane were separated by air. In order to prevent the demage due to radiator swaying, the foams(${\varepsilon}_r{\fallingdotseq}1.03$) were used to fix the patches and ground. The conductor for the radiators was 0.05 [mm] thick. The measured input return loss showed less than -10 [dB] at the broadband from 3499 to 4743 [MHz]. It's measured bandwidth was 1244 [MHz]. The radiation patterns measured at 3400, 3600, 3800, 4000 and 4200 [MHz] showed Omni-directional characteristics. The gain in the E-plane and H-plane was 4.7 ~ 6.1 and 2.1 ~ 4.3 [dBi], respectively.

  • PDF

The analysis of the operating characteristic for the wideband coaxial line impedance transformer (광대역 동축선로 임피던스 변환회로의 동작 특성 분석)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.165-172
    • /
    • 2019
  • Using two or more coaxial lines, if one port is connected in series and the other port is connected in parallel, it can be implemented the wideband transmission line transformer(TLT). Because the wideband TLT utilizes the outer conductor of the coaxial line, it is difficult to predict the characteristics. In this paper, based on the analysis for the transfer characteristic(S21) according to the loss of the each line in ${\lambda}/4$-microstrip line TLT, the operating characteristic of the fabricated wideband 4:1 TLT using two $25{\Omega}$-coaxial lines is investigated. The fabricated wideband TLT shows the notch characteristic in which the transfer signal sharply decreases at ${\lambda}/4$ frequency of the coaxial line and has a value within -0.2dB of the transfer characteristic(S21) in $0.06{\sim}0.2{\lambda}$ frequency range of the coaxial line. This transfer characteristics(S21) can change the operating frequency range slightly and set the optimum transfer characteristic(S21) at the desired frequency by changing the length of the microstrip line.

Lightning Protection System of Solar Power Generation Device (태양광발전장치의 낙뢰보호 시스템)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2023
  • Among the failures of photovoltaic power generation facilities, failures caused by surges account for 20% of the total failure rate, and energy emissions of tens to hundreds [A] during power generation and electrical damage to inverters and connection boards lead to electrical safety accidents. In particular, in the case of lightning, an abnormal voltage is induced in an electric circuit to destroy insulation, and the current flowing at this time causes a fire and acts as a factor that accelerates the deterioration of parts. Due to this action, the problem of electrical safety of solar power generation devices spreading from outside the city center to the inside of the city center such as houses, apartments, and government offices is emerging. Since lightning strikes cause both field-based and conducted electrical interference, this effect increases with increasing cable length or conductor loops. In addition, surge damages not only solar modules, inverters and monitoring devices, but also building facilities, which can eventually cause operational shutdown due to fire of the photovoltaic power generation system and consequent financial loss. Therefore, in this paper, a lightning protection system for solar power generation devices is studied for the purpose of reducing property damage and human casualties due to the increase in fire and electrical safety accidents caused by lightning strikes in photovoltaic power generation systems.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.