• Title/Summary/Keyword: Conductive shield

Search Result 23, Processing Time 0.022 seconds

Compact S-Band Antenna Hat for RF Compatibility Testing of Launch Vehicle (발사체의 RF 호환성 시험을 위한 소형 S-밴드 안테나 햇)

  • Kim, Sung-Wan;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.148-157
    • /
    • 2015
  • In this paper, we propose a compact antenna hat to perform RF compatibility testing efficiently between the launch vehicle and ground stations. The proposed structure implements a small size and low loss using the conductive shield instead of the conventional RF absorber. The S-band antenna hat, which is fabricated for an inverted-F onboard antenna with the size of $74mm{\times}13mm{\times}16mm$, has the small enclosure of $88mm{\times}35mm{\times}44mm$, the return loss of 25.6 dB, the insertion loss of 0.26 dB, and the leakage loss of 49.4 dB at the center frequency of 2.25 GHz. The simulated and measured results show a good agreement.

Effect of steel fibers on surface electric resistivity of steel fiber reinforced concrete for shield segment (강섬유보강 콘크리트 세그먼트의 강섬유가 표면전기저항에 미치는 영향)

  • Moon, Do-Young;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.557-569
    • /
    • 2011
  • Steel Fiber Reinforced Concrete (SFRC) is widely used for tunnel structures such as shotcrete and segments. Corrosion of steel fibers and steel reinforcements may affect on the long-term durability of the concrete structures with steel fibers and reinforcement. Therefore, a study on the feasible method to evaluate corrosion possibility and permeability of the concrete structures is required. This experimental study examines the effect of steel fibers and internal reinforcement on the surface resistivity. Steel fiber mix ratio and corrosion of internal reinforcement were considered as variables. In the results, steel fibers significantly reduce the surface resistivity due to those conductive characteristic. In the case of 3% mix ratio, it was difficult to evaluate rate and permeability of corrosion due to the great reduction of resistivity by mixing of steel fibers.

Volume Resistivity and Thermal conductivity of Semiconducting Materials by Acetylene Black (아세틸렌블랙 함량에 따른 반도전 재료의 체적저항과 열전도 특성)

  • Yang, Jong-Seok;Lee, Kyung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.134-135
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated volume resistivity and thermal conductivity showed by changing the content of acetylene black which is the component parts of semiconductive shield in underground power transmission cable. The sheets were primarily kneaded in their pellet form material samples for 5 minutes on rollers ranging between 70[$^{\circ}C$] and 100[$^{\circ}C$]. Then they were produced as sheets after pressing for 20 minutes at 180[$^{\circ}C$] with a pressure of 200[kg/cm]. The content of conductive acetylene black was the variable, and their contents were 20, 30 and 40[wt%], respectively. Volume resistivity of specimens was measured by volume resistivity meter after 10 minutes in the preheated oven of both $25\pm1[^{\circ}C]$ and $90\pm1[^{\circ}C]$. Thermal conductivity was measured by Nano Flash Diffusivity. The measurement temperatures of thermal conductivity using Nano Flash Diffusivity were both 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, volume resistivity was high according to an increase of the content of acetylene black. And thermal conductivity was increased to an increase of the content of acetylene black. And thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF