• Title/Summary/Keyword: Conditioning of reaction mixture

Search Result 4, Processing Time 0.017 seconds

Synthesis of a Nitrogen-rich Insensitive Energetic Material, DNAM(Dinitroammeline) (고질소 둔감에너지 물질인 DNAM(Dinitroammeline) 합성공정 개발)

  • Sul, Minjung;Kim, Minjun;Kim, Jinseuk;Kim, Seunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • We studied the Lab-scale process for the development of DNAM in aspect of safety and overall efficiency. Melamine is used for starting material of process, DNAM was synthesized by oxidation and nitration reaction. In order to optimize the process parameters with the product in higher yield and purity, a systematic study with variation of different parameters like molar ratio of nitrating mixture, conditioning time and order of reactant was carried out. The optimized reaction conditions for the synthesis of DNAM were : conditioning time of $3{\pm}3.5$ hour and nitrating mixture in 1:1.4 molar ratio. In order to proceed a stable reaction, melamine was added with enough time to relieve reaction heat. From these reaction condition, DNAM could be obtained in a yield of more than 60%.

Dependency of Water Availability on the Esterifying Activity of Candida cylindracea Lipase in Organic Solvent

  • Moor, Izani;Noor, Jamil;Ibrahim che Omar
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.99-102
    • /
    • 2000
  • To establish optimal conditions for esterification by Candida cylindracea, lipase reactions were performed simultaneously, separately, or individually in the varying initial rates of $0.014-0.060\mu$mole free fatty acids consumed min-1g-1. The reactants which were conditioned at aw of 0.12 gave the highest initial rate of esterifying $0.060\mu$mole free fatty acids consumed min-1g-1. These results suggest that the esterifying activity of lipase in an organic system depends on the transfer of available water within the reaction system.

  • PDF

Modeling of Partially Premixed Turbulent Combustion by Zone-Conditioned Conditional Moment Closure (Zone-conditioned CMC 모델을 이용한 부분예혼합 난류연소 모델링)

  • Lee, Eun-Ju;Kim, Seung H.;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.41-45
    • /
    • 2002
  • The zone-conditioned CMC equations are derived by taking an unconditional average of the generic conservation equations multiplied by delta and Heaviside functions in terms of mixture fraction and reaction progress variable. The resulting equations are essentially in the same form as the single zone CMC equations except for separate flow fields for burned and unburned gas. The zone-conditioned two-fluid equations are applied to a stagnating turbulent premixed flame brush of Cheng and Shepherd[5l. It is shown that the flame stretch factor is of crucial importance to accurately reproduce the measured mean reaction progress variable and conditional velocities. Further work is in progress for the relationship between surface and volume averages and extension to partially premixed combustion on the basis of a triple flame structure, e. g. in a lifted turbulent diffusion flame.

  • PDF

Comparison of Temperature and Light Intensity Effects on the Photooxidation of Toluene-NOx-Air Mixture (온도와 광도가 톨루엔-NOx-공기 혼합물의 광산화 반응에 미치는 영향의 비교)

  • Ju, Ok-Jung;Bae, Gwi-Nam;Choi, Ji-Eun;Lee, Seung-Bok;Ghim, Young-Sung;Moon, Kil-Choo;Yoon, Soon-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.353-363
    • /
    • 2007
  • To differentiate temperature effect from the light intensity effect on the formation of secondary products during the photooxidation of toluene-$NO_x$-air mixtures, steady-state air temperature was changed from $20^{\circ}C\;to\;33^{\circ}C$ at the same light intensity of $0.39min^{-1}$ in an indoor smog chamber. Smog chamber consisted of 64 blacklights and a $5.8m^3$ reaction bag made of Teflon film. Air temperature was controlled by an air-conditioning system. The starting time for rapid conversion of NO to $NO_2$ was slightly delayed with decreasing air temperature. In contrast to light intensity effect, the ozone formation time and the ozone production rate were insensitive to air temperature. Although the formation time for secondary organic aerosols was not changed, the particle number concentration increased with temperature. However, the newly formed secondary organic aerosol mass at lower temperature was higher than that at higher temperature. Since light intensity significantly affected the starting time and quantity of ozone and aerosol formation, it is considered that the temperature could contribute partly the quantity of aerosol formation during the photooxidation of toluene-$NO_x$-air mixtures.