• Title/Summary/Keyword: Condition monitoring maintenance

Search Result 273, Processing Time 0.027 seconds

Cost Analysis of Monitoring System with Optic Fiber Sensors (광섬유센서를 이용한 모니터링 시스템의 비용 분석)

  • You, Young-Jun;Park, Ki-Tae;Joo, Bong-Chul;Lee, Chin-Hyung
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.67-73
    • /
    • 2009
  • Civil infrastructure is the basis facility which builds up the base of national economy operation. Consequently unexpected sudden abnormal condition of civil infrastructure causes private and national property loss and moreover can spread social issue. Therefore, continuous maintenance and safety management for the civil infrastructures should be handled with great weight. Monitoring system for managing bridge maintenance was introduced first in the early of 1990s and has been developed up to real time measurement and analysis. Thesedays another system using fiber optic sensors is being developed. This paper presents the cost analysis of bridge monitoring system with fiber optic sensors which is gathering attention. Various cases were considered and the results were compared with that of monitoring system with electronic resistant type sensors widely used. As a results, fiber optic sensor system has good advantages in various cases, and a1so cost effectiveness compared to conventional sensor system.

  • PDF

Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response (가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2010
  • In this paper, a two-phase structural health monitoring system using acceleration response signatures are presented to firstly alarm the change in structural condition and to secondly detect the changed location for full-scale concrete girder bridges. Firstly, Mihocheon Bridge which is a two-span continuous concrete girder bridge is selected as the target structure. The dynamic response features of Mihocheon Bridge are extracted by forced vibration test using bowling ball. Secondly, the damage alarming occurrence and the damage localization techniques are selected to design two-phase structural health monitoring system for Mihocheon Bridge. As the damage alarming techniques, auto-regressive model using time-domain signatures, correlation coefficient of frequency response function and frequency response ratio assurance criterion are selected. As the damage localization technique, modal strain energy-based damage index method is selected. Finally, the feasibility of two-phase structural health monitoring systems is evaluated from static loading tests using a dump truck.

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.

Structural Health Monitoring of Shanghai Tower Considering Time-dependent Effects

  • Zhang, Qilin;Yang, Bin;Liu, Tao;Li, Han;Lv, Jia
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This paper presents the structural health monitoring (SHM) of Shanghai Tower. In order to provide useful information for safety evaluation and regular maintenance under construction and in-service condition, a comprehensive structural health monitoring (SHM) system is installed in Shanghai Tower, which is composed of a main monitoring station and eleven substations. Structural responses at different construction stages are measured using this SHM system and presented in this study. Meanwhile, a detailed finite element model (FEM) is created and comparison of results between SHM and FEM is carried out. Results indicate that the time-dependent property of concrete creep is of great importance to structural response and the measured data can be used in FEM updating to obtain more accurate FEM models at different construction stages. Therefore, installation of structural health monitoring system in super-tall buildings could be considered as an effective way to assure structural safety during the construction process.

Reliable monitoring of embankment dams with optimal selection of geotechnical instruments

  • Masoumi, Isa;Ahangari, Kaveh;Noorzad, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.85-105
    • /
    • 2017
  • Monitoring is the most important part of the construction and operation of the embankment dams. Applied instruments in these dams should be determined based on dam requirements and specifications. Instruments selection considered as one of the most important steps of monitoring plan. Competent instruments selection for dams is very important, as inappropriate selection causes irreparable loss in critical condition. Lack of a systematic method for determining instruments has been considered as a problem for creating an efficient selection. Nowadays, decision making methods have been used widely in different sciences for optimal determination and selection. In this study, the Multi-Attribute Decision Making is applied by considering 9 criteria and categorisation of 8 groups of geotechnical instruments. Therefore, the Analytic Hierarchy Process and Multi-Criteria Optimisation and Compromise Solution methods are employed in order to determine the attributes' importance weights and to prioritise of instruments for embankment dams, respectively. This framework was applied for a rock fill with clay core dam. The results indicated that group decision making optimizes the selection and prioritisation of monitoring instruments for embankment dams, and selected instruments are reliable based on the dam specifications.

A Study for the Development of Fault Diagnosis Technology Based on Condition Monitoring of Marine Engine (선박 엔진의 상태감시 기반 고장진단 기술 개발에 관한 연구)

  • Park, Jae-Cheul;Jang, Hwa-Sup;Jo, Yeon-Hwa
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.230-231
    • /
    • 2019
  • This study is a development on condition based maintenance(CBM) technology which is a core item of future autonomous ships. It is developing to design & installation of condition monitoring system and acquisition & processing of data from ongoing ships for fault prediction & prognosis of engine in operation. The ultimate goal of this study is to develop a predicts and decision support software for marine engine faults. To do this, the FMEA and fault tree analysis of the main engine should be accompanied by the analysis of classification of system, identification of the components, the type of faults, and the cause and phenomenon of the failure. Finally, the CBM system solution software could predict and diagnose the failure of main engine through integrated analysis for bid-data of ongoing ships and engineering knowledge. Through this study, it is possible to pro-actively cope with abnormal signals of engine and to manage efficiently, and as a result, expected that marine accident and ship operation loss during navigation will be prevented in advance.

  • PDF

A FRF-based algorithm for damage detection using experimentally collected data

  • Garcia-Palencia, Antonio;Santini-Bell, Erin;Gul, Mustafa;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.399-418
    • /
    • 2015
  • Automated damage detection through Structural Health Monitoring (SHM) techniques has become an active area of research in the bridge engineering community but widespread implementation on in-service infrastructure still presents some challenges. In the meantime, visual inspection remains as the most common method for condition assessment even though collected information is highly subjective and certain types of damage can be overlooked by the inspector. In this article, a Frequency Response Functions-based model updating algorithm is evaluated using experimentally collected data from the University of Central Florida (UCF)-Benchmark Structure. A protocol for measurement selection and a regularization technique are presented in this work in order to provide the most well-conditioned model updating scenario for the target structure. The proposed technique is composed of two main stages. First, the initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference between the updated parameters from subsequent stages revealed both location and extent of damage in a "blind" scenario, without any previous information about type and location of damage.

Evaluation of Nuclear Plant Cable Aging Through Condition Monitoring

  • Kim, Jong-Seog;Lee, Dong-Ju
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.475-484
    • /
    • 2004
  • Extending the lifetime of a nuclear power plant [(hereafter referred to simply as NPP)] is one of the most important concerns in the global nuclear industry. Cables are one of the long-life items that have not been considered for replacement during the design life of a NPP. To extend the cable life beyond the design life, it is first necessary to prove that the design life is too conservative compared with actual aging. Condition monitoring is useful means of evaluating the aging condition of cable. In order to simulate natural aging in a nuclear power plant. a study on accelerated aging must first be conducted. In this paper, evaluations of mechanical aging degradation for a neoprene cable jacket were performed after accelerated aging under tcontinuous and intermittent heating conditions. Contrary to general expectations, intermittent heating to the neoprene cable jacket showed low aging degradation, 50% break-elongation, and 60% indenter modulus, compared with continuous heating. With a plant maintenance period of 1 month after every 12 or 18 months operation, we can easily deduce that the life time of the cable jacket of neoprene can be extended much longer than extimated through the general EQ test. which adopts continuous accelerated aging for determining cable life. Therefore, a systematic approach that considers the actual environment conditions of the nuclear power plant is required for determining cable life.

Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach

  • Zhang, Yi;Kim, Chul-Woo;Zhang, Lian;Bai, Yongtao;Yang, Hao;Xu, Xiangyang;Zhang, Zhenhao
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.285-299
    • /
    • 2020
  • Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged structural condition.

CBM 연동한 선박 예방정비 대시보드 개발

  • 이범석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.443-444
    • /
    • 2022
  • 전통적인 선박 모니터링 방식은 단순 정보 조회나 매뉴얼에 의한 수동적인 모니터링이었다면, 자율운항 선박에서는 주요 기기의 모니터링 개념이 데이터 기반의 예측 모델링 적용이 필수적이다. 선박의 주요 기기 5종에 대한 CBM(Condition Based Monitoring) 정보와 PMS(Planed Maintenance System) 정보를 통합 GUI(Dashboard) 형태로 선육간 구성하여, 선박-육상간 최적의 상태 모니터링과 신제적인 예방 정비 활동이 가능하도록 서비스를 제공한다.

  • PDF