• Title/Summary/Keyword: Condition Changes Prediction

Search Result 119, Processing Time 0.028 seconds

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

Adaptive Reference Structure Decision Method for HEVC Encoder (HEVC 부호화기의 적응적 참조 구조 변경 방법)

  • Mok, Jung-Soo;Kim, JaeRyun;Ahn, Yong-Jo;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • This paper proposes adaptive reference structure decision method to improve the performance of HEVC (High Efficiency Video Coding) encoder. When an event occurs in the input sequence, such as scene change, scene rotation, fade in/out, or light on/off, the proposed algorithm changes the reference structure to improve the inter prediction performance. The proposed algorithm divides GOP (Group Of Pictures) into two sub-groups based on the picture that has such event and decides the reference pictures in the divided sub-groups. Also, this paper proposes fast encoding method which changes the picture type of first encoded picture in the GOP that has such event to CRA (Clean Random Access). With the statistical feature that intra prediction is selected by high probability for the first encoded picture in the GOP carrying such event, the proposed fast encoding method does not operate inter prediction. The experimental result shows that the proposed adaptive reference structure decision method improves the BD-rate 0.3% and reduces encoding time 4.9% on average under the CTC (Common Test Condition) for standardization. In addition, the proposed reference structure decision method with the picture type change reduces the average encoding time 12.2% with 0.11% BD-rate loss.

Prediction of Tidal Changes and Contaminant Transport Due to the Development of Incheon Coastal Zone (인천해역 개발에 따른 조석변화 및 오염물질 운송 예측)

  • Jeong, Shin-Taek;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A horizontal 2-D model which includes the wetting-drying treatment technique in the intertidal zone is established for the prediction of tidal changes and contaminant transport due to the development of Incheon coastal zone. The flow model is verified by the measurement data at Jeong-Do, and then the computed values are closely matched to the observed water elevations and velocities of main-flow direction. And then, the tidal change patterns are simulated using this model before and after the construction of the Youngjongdo New Airport and Shihwa Seadike. In the spring tide condition, pollutants transport pattern is also simulated for the arbitrary pollutants loads. By the analysis of this numerical simulation results, the velocities after development are decreased, and discharged pollutants are mainly transported by the advection along a narrow deep trough. Thus, this model can be used as the compatible prediction model for the tidal change and pollutant transport due to the development plan of Incheon coastal zone.

  • PDF

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

Prediction of Change in Ground Condition Ahead of Tunnel Face Using Three-dimensional Convergence Analysis (터널 3차원 내공변위의 해석을 통한 막장전방 지반상태변화 예측)

  • 김기선;김영섭;유광호;박연준;이대혁
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.476-485
    • /
    • 2003
  • The purpose of this study is to present an analysis method for the prediction of the change of ground conditions. To this end, three-dimensional convergence displacements is analyzed in several ways to estimate the trend of displacement change. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak fracture zone exists a specific trend of displacement change is known to be occurred from the results of the existing researches. The existence of a discontinuity, whose change in front of the tunnel face, can be predicted from the ratio of L/C (longitudinal displacement at crown divided by settlement at crown) etc. Therefore, the change of ground condition and the existence of a fracture zone ahead of tunnel face can be predicted by monitoring three-dimensional absolute displacements during excavation, and applying the methodology presented in this study.

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

Prediction of Biodiesel Combustion, CO and NOX Emission Characteristics in Accordance with Equivalence Ratio (당량비 변화에 따른 바이오디젤 연소 및 CO, NOX 생성 특성 예측)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This study was performed to provide the basic information of the combustion, CO and $NO_X$ characteristics of biodiesel in accordance with equivalence ratio. The closed homogeneous reactor model used for the analysis. The analysis conditions were set to 900 K of the initial temperature, 20 atm of initial pressure and equivalence ratio was changes from 0.6 to 1.4. The results of analysis were predicted and compared in terms of combustion temperature, combustion pressure, CO and $NO_X$ emissions. The results of combustion characteristics showed that ignition delay was decreased and the combustion temperature and combustion pressure was increased in accordance with equivalence ratio. CO emission was decreased in lean condition(${\Phi}$ < 1.0), however, CO emission was increased in rich condition(${\Phi}$ > 1.0) because oxygen supply insufficient. $NO_X$ emission showed the largest amount in condition 0.8 of equivalence ratio because the oxygen concentration was sufficient.

The Evaluation of Performance and Flow Characteristics on the Diffuser Geometries Variations of the Centrifugal Compressor in a Marine Engine Turbocharger (박용 터보차져의 원심압축기의 디퓨져 형상변경에 따른 성능비교 및 유동특성 평가 연구)

  • Kim, Hong-Won;Ha, Ji-Soo;Kim, Bong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30-50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA65(4A10)06 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. NACA65(4A10)06 airfoil showed the widest operating range and higher pressure characteristics than the others.

Analysis on Electromyogram(EMG) Signals by Body Parts for G-induced Loss of Consciousness(G-LOC) Prediction (G-induced Loss of Consciousness(G-LOC) 예측을 위한 신체 부위별 Electromyogram(EMG) 신호 분석)

  • Kim, Sungho;Kim, Dongsoo;Cho, Taehwan;Lee, Yongkyun;Choi, Booyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.119-128
    • /
    • 2017
  • G-induced Loss of Consciousness(G-LOC) can be predicted by measuring Electromyogram(EMG) signals. Existing studies have mainly focused on specific body parts and lacked of consideration with quantitative EMG indices. The purpose of this study is to analyze the indices of EMG signals by human body parts for monitoring G-LOC condition. The data of seven EMG features such as Root Mean Square(RMS), Integrated Absolute Value(IAV), and Mean Absolute Value(MAV) for reflecting muscle contraction and Slope Sign Changes(SSC), Waveform Length (WL), Zero Crossing(ZC), and Median Frequency(MF) for representing muscle contraction and fatigue was retrieved from high G-training on a human centrifuge simulator. A total of 19 trainees out of 47 trainees of the Korean Air Force fell into G-LOC condition during the training in attaching EMG sensor to three body parts(neck, abdomen, calf). IAV, MAV, WL, and ZC under condition after G-LOC were decreased by 17 %, 17 %, 18 %, and 4 % comparing to those under condition before G-LOC respectively. Also, RMS, IAV, MAV, and WL in neck part under condition after G-LOC were higher than those under condition before G-LOC; while, those in abdomen and calf part lower. This study suggest that measurement of IAV and WL by attaching EMG sensor to calf part may be optimal for predicting G-LOC.

Precise Prediction of Optical Performance for Near Infrared Instrument Using Adaptive Fitting Line

  • Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyoung;Oh, Heeyoung;Yuk, In-Soo;Park, Chan;Chun, Moo-Young;Oh, Jae Sok;Kim, Kang-Min;Lee, Hanshin;Jeong, Ueejeong;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of $0.014{\pm}0.007{\lambda}$ rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below ${\lambda}/70$ rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.