• Title/Summary/Keyword: Condensing lens

Search Result 9, Processing Time 0.028 seconds

Micro-replication quality of Fresnel Lens in UV micro-replication process (프레넬 렌즈 UV 미세복제 공정에서의 전사특성에 관한 연구)

  • Lim J.;Lee N.;Kim S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.79-82
    • /
    • 2005
  • Fresnel lens has number of applications in the optical systems because of its advantages. It is nearly flat lens that has small weight. It is conventionally used in lighthouse beacons, condensing unit of overhead projector and etc. Recently, demands of small size optical systems such as display units, information storage systems, optical detecting units had increased. Conventional manufacturing process of high quality Fresnel lens is direct machining. But it is not suitable for mass production because of high cost and long cycle time. Replication process is more suitable for mass production. But the Fresnel lens has number of sharp blade shape prism. In the replication process, this blade shape causes defects that can affect optical efficiency. In this study, replication process of blade shape pattern that has maximum height of $280{\mu}m$, aspect ratio 1.4 for Fresnel lens application.

  • PDF

Optical System with 4 ㎛ Resolution for Maskless Lithography Using Digital Micromirror Device

  • Lee, Dong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.266-276
    • /
    • 2010
  • In the present study, an optical system is proposed for maskless lithography using a digital micromirror device (DMD). The system consists of an illumination optical system, a DMD, and a projection lens system. The illumination optical system, developed for 95% uniformity, is composed of fly's eye lens plates, a 405 nm narrow band pass filter (NBPF), condensing lenses, a field lens and a 250W halogen lamp. The projection lens system, composed of 8 optical elements, is developed for 4 ${\mu}m$ resolution. The proposed system plays a role of an optical engine for PCB and/or FPD maskless lithography. Furthermore, many problems arising from the presence of masks in a conventional lithography system, such as expense and time in fabricating the masks, contamination by masks, disposal of masks, and the alignment of masks, may be solved by the proposed system. The proposed system is verified by lithography experiments which produce a line pattern with the resolution of 4 ${\mu}m$ line width.

A Study on the Influence of Pure Iron Purity of Electric Lens on the Electron Beam Control (전자빔 가공기의 전자렌즈 순철순도가 빔 제어에 미치는 영향)

  • Lee Chan-Hong;Ro Seung-Kook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.149-153
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. The polepieces of these lenses are usually made with high purity iron which is hard to fabricate and very expensive. In this paper, the possibility of using polepiece of object lens composed with pure iron and low carbon steel was examined to reduce cost. The magnetic field at object lens was calculated with finite element method, and practical focusing qualities of SEM pictures were observed comparing for the object lens polepieces with pure iron and two type of composed with low carbon steel.

  • PDF

Design and Analysis of Magnetic Field Control in Electron Lenses for a E-Beam Writer (전자빔 가공기용 자기 렌즈의 자기장 제어구조 설계)

  • 노승국;이찬홍;백영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.401-404
    • /
    • 2004
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. To achieve small spot size as 1-2 nm for higher power of electron beam, magnetic lenses should be designed considering their magnetic field distribution. In this paper, the magnetic field at two condenser lenses and object lens are calculated with finite element method and discussed its performances.

  • PDF

A study on the Design and Application of a TIR Lens for Realizing A Compact Spot-Type UV Curing Machine Optical System (컴팩트한 Spot형 UV 경화기 광학계를 구현하기 위한 TIR 렌즈 설계 및 응용에 관한 연구)

  • Kim, Yu-Rim;Heo, Seung-Ye;Lee, Sang-Wook;Kim, Wan-Chin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.255-264
    • /
    • 2022
  • The conventional spot-type UV curing machine configures a collimator optical system using a plurality of lenses so that the light beam is incident through an optical cable. In order to increase the transmission light efficiency, a collimator optical system composed of three or more lenses is required, and accordingly, it is difficult to align the optical system, and it is difficult to implement the system compactly. In this study, a single TIR lens collimator that can realize the same level of spot diameter and light efficiency as the conventional collimator optical system composed of three lenses was designed. Through this, the light efficiency at the curing area with the minimum illuminance deviation was 33.2 %, which was similar to the performance of the reference collimator optical system, and the illuminance deviation on the curing area was 18.8 %, ensuring acceptable performance. In addition, by arranging a fly-eye lens with field flattening function at the front end of the condensing lens, the effective curing area diameter was reduced from 5.0 mm to 3.0 mm, enabling higher curing energy density to be realized. In addition, it was confirmed that the illuminance deviation can be greatly improved to a level of 14.4%.

Micro-groove machining of SUS304 using by femto second laser (펨토초 레이저를 이용한 SUS304 의 마이크로 홈가공)

  • Kwak T.S.;Ohmori H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1179-1180
    • /
    • 2005
  • 3D micro scaled shapes are fabricated with the method of direct writing and superposing grooving in ambient air using femto-second laser pulses and copper, aiming at establishing an industrially useful femto-second laser processing machine to be able to fabricate three dimensional micro-scale structures, especially micro scaled molds, and processing techniques. For the several advantages, there is no thermally influenced region around the area irradiated by the laser beam and surfaces irradiated laser beam are smooth and substances ablated to form are no attached on the surface of works and so on, the femto-second laser technology is anticipated for advanced micro/nano precision technology.

  • PDF

Investigation of Research & Development Trends for Sunlight System (태양광 채광 시스템의 기술개발동향에 관한 조사분석연구)

  • Kim, Sun-Ho;Yoon, Kwang-Sik;Kim, Byung-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.260-263
    • /
    • 2007
  • The importance of natural light in building is known by all of us who experienced dark rooms. The sunlight system is very important from energy saving and human welfare point of view. The system consists of light-collecting module, light -transporting module and light-emitting module. The light-collection is used light reflection mirror, a prism for lighting bent, and lens for light condensing. The transportation of collected sunlight is used polished duct, tube, pipe and specially used fiber optic cable. This paper investigate research and development trends of sunlight system for advanced product.

  • PDF

The Conditions of a Holographic Homogenizer to Optimize the Intensity Uniformity (주기적인 홀로그램을 이용한 레이저 광 세기 균일화기에서 균일도를 최적화하기 위한 홀로그램의 조건)

  • Go, Chun-Soo;Oh, Yong-Ho;Lim, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.578-583
    • /
    • 2011
  • We report on the design of a holographic homogenizer composed of a periodic hologram and a condensing lens. If the hologram is periodic, the homogenizer is free from the alignment error of the incident laser beam. Holographic homogenizer also has an advantage of the flexibility in the size of the target beam. We calculated theoretically the Fraunhofer diffracted wave function when a rectangular laser beam is incident on a periodic hologram. The diffracted wave is the sum of sinc functions at regular distance. The width of each sinc function depends on the size of the incident laser beam and the distance between the sinc functions depends on the period of the hologram. We calculated numerically the diffracted light intensity for various ratios of the size of the incident laser beam to the period of the hologram. The results show that it is possible to make the diffracted beam uniform at a certain value of the ratio. The uniformity is high at the central part of the target area and low near the edge. The more sinc functions are included in the target area, the larger portion of the area becomes uniform and the higher is the uniformity at the central part. Therefore, we can make efficient homogenizer if we design a hologram so that the maximum number of the diffracted beams may be included in the target area.

Smartphone Fundus Photography in an Infant with Abusive Head Trauma (학대뇌손상 영아에서 스마트폰으로 촬영한 안저소견)

  • Kim, Yong Hyun;Choi, Shin Young;Lee, Ji Sook;Yoon, Soo Han;Chung, Seung Ah
    • Journal of The Korean Ophthalmological Society
    • /
    • v.58 no.11
    • /
    • pp.1313-1316
    • /
    • 2017
  • Purpose: To report fundus photography using a smartphone in an infant with abusive head trauma. Case summary: An 8-month-old male infant presented to the emergency room with decreased consciousness and epileptic seizures that the parents attributed to a fall from a chair. He had no external wounds or fractures to the skull or elsewhere. However, computerized tomography of the brain revealed an acute subdural hematoma in the right cranial convexity and diffuse cerebral edema, leading to a midline shift to the left and effacement of the right lateral ventricle and basal cistern. The attending neurosurgeon promptly administered a decompressive craniectomy. Immediately after the emergency surgery, a fundus examination revealed numerous multi-layered retinal hemorrhages in the posterior pole extending to the periphery in each eye. He also had white retinal ridges with cherry hemorrhages in both eyes. We acquired retinal photographs using the native camera of a smartphone in video mode. The photographer held the smartphone with one hand, facing the patient's eye at 15-20 cm, and held a 20 diopter condensing lens at 5 cm from the eye in the other hand. Our documentation using a smartphone led to a diagnosis of abusive head trauma and to obtain the criminal's confession, because the findings were specific for repetitive acceleration-deceleration forces to an infant's eye with a strong vitreoretinal attachment. Conclusions: This ophthalmic finding had a key role in the diagnosis of abusive head trauma. This case presented the diagnostic use of a smartphone for fundus photography in this important medicolegal case.