• Title/Summary/Keyword: Condensing Heat Transfer Coefficient

Search Result 42, Processing Time 0.025 seconds

An Experiment on Evaporating Heat Transfer of HCFC-22 for Transport Refrigeration System (HCFC-22 냉매사용 차량냉동시스템의 증발 열전달에 관한 실험)

  • Oh, M.D.;Kim, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.166-174
    • /
    • 1994
  • An experimental study has been performed to identify the evaporation characteristics of HCFC-22 for transport refrigeration system. Heat transfer coefficients were measured in a horizontal, smooth evaporating tube with an inner diameter of 10.7mm and a length of 2.8m. The refrigerant was heated electrically by surface-wrapped heaters and uniform power is applied along the tube. The entire tube was divided into 7 sections. Surface temperatures of tube and refrigerant temperature in each test section were measured. Pressure drops in each section and the inlet pressure were also measured. The mass flowrate of the refrigerant was controlled and measured. A single tube evaporation test was conducted for different ranges of mass flux of refrigerant, heat flux of evaporator and condensing temperature of transport refrigeration system. The evaporation heat transfer coefficients of HCFC-22 were compared with predictions from the well known Chen's correlations. Averaged heat transfer coefficients in this experiment range from $2kW/m^2/^{\circ}C$ to $3kW/m^2/^{\circ}C$. Most of the experimental results differ from the predicted ones by less than ${\pm}30%$.

  • PDF

A Study on the Effects of Etching Surface Characteristics on Condensation Heat Transfer in Pre-heating Exchanger (급기 예열 열교환기에서 에칭 표면 특성이 응축 열전달에 미치는 영향에 관한 연구)

  • Seok, Sungchul;Hwang, Seung Sik;Choi, Gyu Hong;Shin, Donghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • In order to improve the heat efficiency of the general residential boiler, we performed an experiment of condensation heat transfer to air pre-heating exchanger adhered to the condensing boiler. In this study, surface roughness was imposed on the surface of stainless steel by etching. And in order to evaluate the heat transfer performance on each plate, the counter flow heat exchanger fabricated with polycarbonate in used. As a result, on etching treated plate's overall heat transfer coefficient is higher than the original plate. And etching treated plate during 60 seconds with etchant is the to average 15% compared to bare stainless steel. And we studied the heat transfer enhancement factor through the analysis of surface characteristics using AFM.

ASSESSMENT OF CONDENSATION HEAT TRANSFER MODEL TO EVALUATE PERFORMANCE OF THE PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Cho, Yun-Je;Kim, Seok;Bae, Byoung-Uhn;Park, Yusun;Kang, Kyoung-Ho;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.759-766
    • /
    • 2013
  • As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for 3rd-generation (GEN-III) nuclear power plants that are driven by passive systems. The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the Advanced Power Reactor Plus (APR+), and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. The heat removal capability of the PAFS is strongly dependent on the heat transfer at the condensate tube in Passive Condensation Heat Exchanger (PCHX). To evaluate the model of heat transfer coefficient for condensation, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used to simulate the experimental results from PAFS Condensing Heat Removal Assessment Loop (PASCAL). The Shah model, a default model for condensation heat transfer coefficient in the MARS code, under-predicts the experimental data from the PASCAL. To improve the calculation result, The Thome model and the new version of the Shah model are implemented and compared with the experimental data.

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

A Proposed Model to Estimate Condensing Heat Transfer Coefficient in Steam-Air Mixture (비응축성 가스(공기)가 존재하는 격납용기내에서 증기의 응축 열전달 계수평가에 관한 모델)

  • Choi, J. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.344-352
    • /
    • 1983
  • 격납 용기 내에 비응축성 가스(공기)가 존재하는 경우에 증기의 응축 열전달 계수를 평가하는 방 법을 연구하였다. 유일한 대규모 격납 용기 실험인 CVTR자료를 이용하여 응축 열전달 계수를 계산하여, 현재 원자력 발전소의 냉각재 상실 사고(LOCA) 및 주 증기 배관 파열사고(MSLB)시에 격납 용기의 안전 해석에서 공식적으로 사용되고 있는 Tagami와 Uchida열전달 계수 관계식과 비교해 본 결과 좋은 일치를 보여 주었다.

A Study on Condensation Heat Transfer in Air Pre-heating Heat Exchanger using Hydrophilic Surface (친수성 표면 처리를 통한 공기 예열 열교환기의 응축 열전달 성능 연구)

  • Park, Jae Won;Hwang, Sueng Sik;Seok, Sung Chul;Shin, Dong Hoon;Chung, Tae Yong;Son, Sueng Gil
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2014
  • To increase the heat transfer rate of the air pre-heating heat exchanger used for the condensing boiler, We investigated condensation heat transfer coefficients through plasma surface treatment. The hydrophilic surface showed about 10% increase in heat transfer rate than original plate. It shows that Shah correlation can be used to predict the condensation heat transfer coefficient on the original surface within 10% error range after the compatison between Shah correlation and the condensation heat transfer coefficients measured on the hydrophilic surface and original surface. Therefore, we have shown that Shah correlation is available when designing the air pre-heating heat exchanger using the original surface in this study.

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow (튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향)

  • Sun Youb Lee;Cong-Tu Ha;Jae Hwa Le
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

A Study on the Condensation Heat Transfer of Low Integral Fin Tubes (낮은 핀 관의 응축 열전달 성능에 관한 연구)

  • Han, Gyu-Il;Park, Seong-Guk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1996
  • The heat transfer performance of R - 11 vapor condensing on integral fin tubes has been studied using fin tubes having the fin density from 748 to 1654 fins per meter. Electric heater supplied heat energy to the boiler to generate R - 11 vapor over the range of 25-60W. Condensation rates of each tubes were tested under the condition of cooling water flow rate from 400l/h to 2500l/h. For the seven fin tubes tested, the best performance has been obtained with a tube having a fin density of 1417fpm and a fin height of 1.3mm. This tube has yielded a maximum value of the heat transfer coefficient of 16500W/$m_2$K, at a vapor to wall temperature difference of 3K. Experimental results of integral fin tubes have been compared with available predictive models such as Beatty - Katz's analysis, Webb's analysis, Sukhatme's analysis and Rudy's empirical relation. The experimental results were shown to be in good agreement with that of the Sukhatme's analysis.

  • PDF

A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser (응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구)

  • Han, Kyuil;Cho, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.