• Title/Summary/Keyword: Condenser tube

Search Result 209, Processing Time 0.027 seconds

Study on longitudinal variation of subcooling with high elevated liquid line in a modular heat pump system (모듈형 동시냉난방 열펌프의 장배관/고낙차에 따른 액선 과냉도 변화에 대한 연구)

  • Shin, Kwang-Ho;Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang;Park, Sung-Ryung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1255-1260
    • /
    • 2008
  • This study is simulation of high elevated liquid line of a modular heat pump system to observe longitudinal subcooling variation. In a high elevated tube, subcooled refrigerant(R410A) through a condenser changes its states by heat transfer with surrounding air and by pressure drop from elevation. In this study, the liquid line was simulated through correlations of heat transfer and pressure drop for the variation from single-phase into two-phase flow. Pressure drop, heat transfer rate and vapor quality were calculated as key parameters. Two-phase turning heights and variations of the key parameters were confirmed from the simulation. As a result, high elevation of liquid line has great influence on upward flow, which requires additional equipment to compensate the variation.

  • PDF

Daily Heating Performance of a Ground Source Multi-heat Pump at Heating Mode (지열원 물대공기 멀티 히트펌프의 일일 난방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Moon, Je-Myung;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.527-535
    • /
    • 2009
  • The aim of this study is to investigate the daily heating performance of ground source multi-heat pump system with vertical single U-tube type GLHXs, which were installed in a school building located in Cheonan. Daily average COP of heat pump unit on Jan. 12th, 2009 at heating mode was lower than it on Nov. 10th, 2008 and Dec. 15th, 2008, because of lower EWT of the outdoor heat exchanger and relatively smaller size of condenser and evaporator. But, the system COP on the former was higher than it on the latter because ground loop circulating pump was operated in rated speed. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load change have to be developed in order to enhance the performance of the system COP.

Analysis of Thermal Control Characteristics of VCHP by the Charging Mass of Non-Condensible Gas (불응축가스 주입량에 따른 VCHP의 열제어 특성)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1139-1144
    • /
    • 2005
  • This study has been performed to investigate the thermal performance of variable conductance heat pipe (VCHP) with meshed wick. The length of condenser portion in a VCHP is varied by the expansion of inert gas with the operation temperature, and the heat transport capacity is thus varied with the operating temperature. In this study, numerical evaluation of the VCHP is made for the thermal performance of VCHP, based on the diffusion model of inert gas. Water is used as a working fluid and nitrogen as a control inert gas in the copper tube. As a result, the thermal performance of VCHP has been compared with that of constant conductance heat pipe (CCHP) according to the variation of operation temperature. Maximum heat transport capacity of VCHP is mainly presented for operation temperature and the variation of operation temperature is also presented for heat transfer rate of VCHP.

Effects of Accumulator Heat Exchanger on the Performance of a Refrigeration System (열교환기 내장형 어큐뮬레이터가 냉동시스템의 성능에 미치는 영향에 관한 연구)

  • Kang Hoon;Choi Kwang-Min;Park Cha-Sik;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.418-425
    • /
    • 2006
  • An AHX (Accumulator Heat exchanger) consists of a commercial accumulator and an inner heat exchanger located inside of the accumulator. The AHX is used in multi air-conditioners to assure that liquid-phase refrigerant enters into the expansion device. This purpose is achieved by heat transfer between the refrigerant leaving the evaporator and the refrigerant leaving the condenser. In this study, the effects of AHX on the performance of a refrigeration system using R-22 were measured and the test results were analyzed. The operating characteristics of the refrigeration system with the AHX are considerably different from those without the AHX. Therefore, it is required to determine optimum refrigerant charge and optimum operating conditions when the AHX is used in the refrigeration system having a constant flow-area expansion device such as capillary tube.

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

Area Effect on Galvanic Corrosion of Condenser Materials with Titanium Tubes in Nuclear Power Plants (Titanium 전열관을 사용하는 원전 복수기 재료의 Galvanic Corrosion에 미치는 면적의 영향)

  • Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 1993
  • Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, if this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R$_1$(surface area of carbon steel/surface area of Ti) and R$_2$(surface area of carbon steel/surface area of Cu) are very important for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when the ratio of surface area of Fe/ surface area of Al Brass is 1 while it is 570 mpy when this ratio is 10$^{-2}$ . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R$_1$ and R$_2$ on the polarization curve.

  • PDF

Air-side Heat Transfer and Pressure Drop of a Fin-and-Tube Heat Exchanger Under Low Temperature Condition (저온 조건에서 핀-관 열교환기의 공기측 열전달 및 압력손실)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.15-20
    • /
    • 2017
  • Currently, residential air conditioners operate as a heat pump during winter. In this case, the outdoor heat exchanger acts as an evaporator obtaining heat from cold air. On the other hand, it acts as a condenser during summer transferring heat to hot air. The outdoor temperature changes significantly from high to low. Generally, the air-side j and f factors are obtained at a standard outdoor temperature. Therefore, the applicability of the j and f factors under different outdoor conditions needs to be checked. In this study, tests were conducted for a two-row louver finned heat exchanger changing the outdoor temperature to subzero. The effects of the tube-side brine flow rate were also checked. The results showed that air-side j and f factors were essentially constant and independent of the outdoor temperature, suggesting that an extension of j and f factors obtained under standard conditions to a low outdoor temperature is acceptable. All j and f factors agreed within 9% and 3%, respectively. Tests were also conducted by changing the coolant flow rate. Both the j and f factors did not change according to the flow rate, suggesting that the tube-side heat transfer correlation is acceptable.

Condensation Heat Transfer Characteristics of R-410A as an Alternative R-22 in the Condenser with Small Diameter Tubes (세관을 사용한 응축기에서 R-22의 대체냉매인 R-410A의 응축 열전달 특성)

  • Son, Chang-Hyo
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • An experimental study to investigate the condensing heat transfer characteristics of small diameter horizontal double pipe heat exchangers with R-22 and R-410A was performed. Experimental facility was constructed to calculate and observe HTC(heat transfer coefficients), flow patterns and pressure drop. The main components include a liquid pump, an evaporator, a condenser(test section), a sight-glass, pressure taps and measurement apparatus. Two pipes of different diameters are tested; One 5.35 mm ID 0.5 mm thick, the other 3.36 mm ID 0.7 mm thick. The mass flow rate ranged from 200 to $500\;ks/m^2{\cdot}s$ and heating capacity were form 1.0 to 2.4 kW. The flow patterns of R-22 and R-410A were observed with a high speed camera through the sight-glass. The tests revealed that HTC of R-410A was higher than that of R-22 by maximum 5%. Annular pattern was observed for the most cases but stratified flow was also detected when x<0.2. The pressure drop in 3.36 mm ID pipe was higher than that of 5.35 mm by $30{\sim}50%$. Comparing with previous correlations such as Shah, Fujii and Soliman's, Fujii' showed the best good agreement with my data with a maximum deviation of 40%.

  • PDF

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.