• 제목/요약/키워드: Condenser effluent

검색결과 9건 처리시간 0.025초

Condenser cooling system & effluent disposal system for steam-electric power plants: Improved techniques

  • Sankar, D.;Balachandar, M.;Anbuvanan, T.;Rajagopal, S.;Thankarathi, T.;Deepa, N.
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.355-367
    • /
    • 2017
  • In India, the current operation of condenser cooling system & effluent disposal system in existing power plants aims to reduce drawal of seawater and to achieve Zero Liquid Discharge to meet the demands of statutory requirements, water scarcity and ecological system. Particularly in the Steam-Electric power plants, condenser cooling system adopts Once through cooling (OTC) system which requires more drawal of seawater and effluent disposal system adopts sea outfall system which discharges hot water into sea. This paper presents an overview of closed-loop technology for condenser cooling system and to achieve Zero Liquid Discharge plant in Steam-Electric power plants making it lesser drawal of seawater and complete elimination of hot water discharges into sea. The closed-loop technology for condenser cooling system reduces the drawal of seawater by 92% and Zero Liquid Discharge plant eliminates the hot water discharges into sea by 100%. Further, the proposed modification generates revenue out of selling potable water and ZLD free flowing solids at INR 81,97,20,000 per annum (considering INR 60/Cu.m, 330 days/year and 90% availability) and INR 23,760 per annum (considering INR 100/Ton, 330 days/year and 90% availability) respectively. This proposed modification costs INR 870,00,00,000 with payback period of less than 11 years. The conventional technology can be replaced with this proposed technique in the existing and upcoming power plants.

원자력발전소 온배수를 이용한 해양 온도차발전 사이클 해석 (Cycle Simulation on OTEC System using the Condenser Effluent from Nuclear Power Plant)

  • 김남진;전용한;김종보
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.37-44
    • /
    • 2007
  • For the past few years, the concern for clean energy has been greatly increased. Ocean Thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regeneration cycle, Kalina cycle, open cycle and hybrid cycle. The results show that the regeneration cycle using R125 showed a 0.17 to 1.56% increase in energy efficiency, and simple Rankine cycle can generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $15^{\circ}C$. Also, the cycle efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.

원자력발전소 온배수를 이용한 해양온도차발전에 대한 연구 (Study on OTEC System using Condenser Effluent from Nuclear Power Plant)

  • 서향민;박성식;신상호;김종보;김남진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1267-1272
    • /
    • 2008
  • OTEC power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC system was calculated. The results show that the working fluids such as R32 and R125 would be alternatives based upon cutting down the system size, environmental preservation, and conditions without having a severe penalty in efficiency. the initial cost significantly. The regeneration system increase in energy efficiency, and the system can generate electricity when the difference in warm and cold seawater inlet temperatures are greater than $15^{\circ}C$. Also, the system efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.

  • PDF

울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구 (A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant)

  • 강윤영;박성식;박윤범;김남진
    • 설비공학논문집
    • /
    • 제24권7호
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.

원자력 발전소의 온배수를 이용한 해양온도차 발전의 타당성 검토 (OTEC System using the Condenser Effluent from Nuclear Power Plant a feasibility study)

  • 신상웅;천원기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.238.2-238.2
    • /
    • 2010
  • Recently, environmental pollution and energy depletion problems have been issued over the world. For this reason, many renewable systems have been developing. Of these, the Ocean Thermal Energy Conservation(OTEC) is drawing attention as the upcoming alternative energy source. In this paper, the efficiency of each of OTEC which harness the effluent from nuclear power plant was analyzed by using computer calculation. The result, shows that Ul-jin Nuclear Power Plant is the best place geographically and the regenerative cycle is most outstanding performance cycle for OTEC. The difference of temperature between surface water and deep water temperature should be greater than $20^{\circ}C$ in order to increase the efficiency.

  • PDF

Determination of Water Soluble Trace Gass in Ambient Air by Condenser-type Diffusion Denuder Coupled Ion Chromatography

  • 장인형;최낙현;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권3호
    • /
    • pp.329-332
    • /
    • 1999
  • An automated method is developed for simultaneous determination of water soluble gases at parts per trillion level in the environmental air. The method involves temperature-humidity control of sample air using a thermostated humidifier, collection of analyte gases by condenser-type effluent diffusion denuder and subsequent effluent analysis by ion chromatography. The detection limits (3(σ) of the method for CH3COOH, HNO2 and SO2 gases are 0.022, 0.019 and 0.009 ppbv, respectively. The precisions range from 0.3 to 3.0% RSD. The method has been successfully applied to urban air analysis and some results for nitrous acid and SOx, in Seoul air are presented.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석 (Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat)

  • 김현주;이호생;정동호;문덕수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.470-476
    • /
    • 2010
  • 발전소 온배수 및 폐열을 이용한 1 MW급 폐쇄형 해양온도차발전 사이클에 대한 성능을 비교 분석하였다. 폐쇄형 해양온도차발전 사이클에 대한 열역학적 모델은 랭킨 사이클이고, 기화기 증발 열원으로 발전소 온배수를 이용하여 사이클 효율, 기화기 및 응축기 열량 등 사이클 성능을 비교 분석하였다. 발전소 온배수 온도가 증가함에 따라 기화기 내 증발 포화압력은 상승하게 되고 그로 인해 사이클 효율은 증가하였고, 총 출력 1 MW에 필요한 기화기 및 응축기 용량은 감소하였다. 따라서 발전소 온배수는 폐쇄형 해양온도차발전에서 주요한 열원으로 사용될 수 있음을 알 수 있었다. 또한, 주위 이용 가능한 폐열이 있을 때 기화기 출구 작동유체와 열교환시켜 터빈으로 유입되는 작동유체의 온도를 상승시킨다면 사이클 효율은 크게 증가할 것이다.

고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구 (A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones)

  • 하신영;오철;국승기
    • 해양환경안전학회지
    • /
    • 제24권7호
    • /
    • pp.916-922
    • /
    • 2018
  • 는 열교 환기를 세척할 때 최근 신재생에너지의무화제도(RPS: Renewable Portfolio Standard)대상 신재생에너지 항목에 발전소 온배수가 신재생에너지공급인증서(REC:Renewable Energy Certificate)의 수열에너지(가중치 1.5)로 추가되어 온배수 열원에 대한 가치가 높아졌다. 본 연구에서는 고탁도지역 온배수의 직접적인 활용을 위한 방안으로 히트펌프시스템 내 탁도저감장치를 도입하여 열교환기에 가해지는 오염물질의 저감 효과를 확인해보기 위해 한 달 동안 실증테스트를 실시하였다. 실험결과 탁도 저감효과가 80 % 이상으로 고탁도 지역의 온배수 활용을 위한 방안으로 탁도저감장치의 적용가능성을 확인 할 수 있었다. 또한 탁도저감시스템에 따른 열교환기의 오염도 저감 효과를 검증하기 위해 30일간 운전한 열교환기를 해체하여 분석해본 결과 탁도저감시스템을 거친 열교환기보다 그렇지 않은 열교환기의 오염정도가 높은 것을 확인하였다. 열교환기에 유입된 오염물질(스케일)을 분석해본 결과 주로 $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$, NaCl 성분의 광물이 검출되었는데 이는 높은 탁도로 인해 해양퇴적토가 열교환기에 유입된 것으로 분석되었다. 그 외에도 소량이지만 $TiO_2$, MnO, $Cr_2O_3$가 검출되었다. 이는 열교환기를 세척할 때 열교환기 재료로부터 기인한 중금속이 소량 용출된 것으로 판단된다.