• 제목/요약/키워드: Condenser Pressure

검색결과 248건 처리시간 0.028초

각기 다른 열소비율 보정곡선을 갖는 증기터빈의 최적 복수기 운전압력 설정 (The steam turbine condenser pressure optimization with different heat rate correction curves)

  • 조천환;백남호;허진혁;이재헌;문승재;유호선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.224-227
    • /
    • 2008
  • The present study performs a test of a change in a condenser pressure on two kinds of power plants having different condenser pressure-heat rate correction curve and evaluates the results. According to a result of the test, it is confirmed that a sub-critical drum type steam power plant is optimally operated at the condenser pressure of 38㎜Hga that is designed, even during winters. On the other hand, it can be found that a supercritical once through type steam power plant operated at the condenser pressure that is reduced below a design value, that is, up to 28㎜Hga during winters is advantageous in view of turbine efficiency and is operated without a problem in facility operation such as moisture erosion, turbine vibration, etc. Also, the present study compares and reviews a condenser pressure-heat rate correction curve proposed by a manufacturer and a test value. The present study proposes optimum condenser operation pressure capable of concurrently satisfying the stable operation and efficiency improvement of the power plant facility that is operating, making it possible to support an efficient operation of a power plant.

  • PDF

불균일 공기분포와 관의 종류에 따른 핀-관 응축기의 성능 특성에 관한 해석적 연구 (Numerical Study on the Performance of a Fin-and-Tube Condenser with Non-Uniform Air Distribution and Different Tube Types)

  • 조다영;함형창;박창용
    • 설비공학논문집
    • /
    • 제24권12호
    • /
    • pp.858-866
    • /
    • 2012
  • A numerical study was performed to predict the performance of a fin-and-tube condenser. A condenser model was developed and verified by comparing the simulation results with experimental data for a R410A condenser in a residential air-conditioning system. The prediction error was 0.07% and -5.77% for the condenser capacity and pressure drop, respectively. In simulation results, the capacity and pressure drop of the condenser with even air velocity distribution were 0.67% and 12.93% higher than those with uneven distribution of air velocity. It was predicted by the model that the refrigerant distribution at the condenser inlet to the two first passes was not significantly influenced by the air distribution. The simulation results presented that the 1.49% of capacity and 64.6% of pressure drop were reduced by replacing helical microfin tubes with smooth tubes for the condenser.

자동차 에어컨용 평행류 응축기의 성능평가 (Performance Evaluation of a Parallel Flow Condenser for Automotive Air Conditioners)

  • 장혁재;강병하
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.247-253
    • /
    • 2003
  • The new shape of louver-fin has been applied to a parallel flow condenser to enhance air-side heat transfer rate lot an automotive air-conditioner R- l34a is employed as a refrigerant inside the flat tube of the condenser, This problem is of particular interest in reducing the geometric size of the automotive air conditioner The effect of air flow rate on pressure drop as well as heat transfer in air side are studied in detail. Comparison of the performance is also made with that of a conventional parallel flow condenser, which is available in the market. The results obtained indicate that the total pressure drop through the pre sent condenser is not changed, while the heat transfer rate is increased by 24% at high veto city of air flow, compared with those of the conventional condenser. The parallel flow condenser with a new shape of louver-fin could be reduced in size by 20% for the equivalent condenser capacity, compared with the conventional parallel flow condenser.

압축기 계가 결합된 응축기의 동특성 (Dynamic characteristics of the compressor-combined condenser system)

  • 김재돌
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1001-1012
    • /
    • 1998
  • This paper reports the analysis of dynamic characteristics of air-cooled condenser. At first, there is an assumption that the superheated vapor flows into the condenser inlet. And in order to consider the effect of pressure change in the dynamic characteristics of the condenser the combined system of condenser and compressor was used. By using the equation of energy balance and the equation of mass balance, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to flow rate change outlet can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. While the average heat transfer coefficient of the refrigerant side necessary for the theoretical calculation of the dynamic characteristics is given by calculation method for the tube length and pressure drop of air-cooled condenser.

흡수식 열펌프용 공냉식 응축기의 성능특성에 관한 시뮬레이션 (Computer Simulation on the Performance of Air-Cooled Condenser for an Absorption Heat Pump)

  • 박윤철;민만기
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1999-2011
    • /
    • 1995
  • Computer simulation was conducted to study performance characteristics of air-cooled condenser of a double effect absorption heat pump with variations of saturation pressures and mass flow rates of the refrigerant ; volume flow rates, relative humidities and temperatures of the air The vertically installed condenser had the staggered tube array with continuous plate fins of wavy type. When the saturation pressure of the condenser was decreased from 760 torr to 20 torr, heat transfer rates and condensing rates of refrigerant were decreased. If excess refrigerant flows in the condenser, the pressure and saturation temperature of the condenser were increased which makes the refrigerating capacity of an absorption heat pump reduced.

자동차용 에어컨의 단품 성능에 관한 연구 (A Study on the Component Performance for Automotive Air Conditioner)

  • 이대웅;유성연
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.293-303
    • /
    • 2002
  • For successful design of component, performances of one-tank plate type evaporator, gas-liquid separation type condenser, swash plate type compressor and thermostatic expansion valve for automotive air conditioner are investigated experimentally. Heat transfer characteristics in the evaporator are examined by means of air temperature, relative humidity, air volume flow, outlet refrigerant pressure and superheat, and heat transfer characteristics in the condenser are examined by means of air temperature, air velocity and inlet refrigerant pressure. Pressure drops for both evaporator and condenser are measured arid empirical correlations are derived. Volumetric efficiencies and isentropic efficiencies for trio types of compressors with different capacity are measured and compared. Thermostatic expansion valve is tested to investigate the pressure variation according to temperature changes.

표준석탄화력 발전소 해수온도 상승에 따른 복수기 압력 손실 최소화 방안 (A Study on Minimizing of Condenser Pressure Loss according to the Temperature Rise of the Seawater for Korean Standard Coal-fired Power Plants)

  • 안효열;문승재
    • 플랜트 저널
    • /
    • 제11권2호
    • /
    • pp.45-51
    • /
    • 2015
  • 손실비용을 고려하여 발전소 효율에 큰 영향을 미치는 복수기의 운전 관리 방안을 연구하였다. 2013년 S발전소의 해수온도는 복수기 압력과 뚜렷한 상관관계를 보였으며, 해수온도가 변화함에 따라 복수기 압력은 설계 압력 38.1 mmHg 보다 -1.7~+20 mmHg의 차이로 운전되었다. 제작사에서 제시한 열소비율 보정곡선을 통해 복수기 압력 1 mmHg 증가시 1,2호기 0.0201%, 3,4호기 0.0155%의 효율 손실과 1,2호기 12,830 원/h, 3,4호기 9,832 원/h의 시간당 손실비용이 발생함을 알 수 있었다. 또한 계절별 대응운전, 설비 노후화, 예방정비 시점에 따른 손실비용의 차이를 확인하고 월별 관리범위를 설정하였다. 이를 통해 운전 관리범위 준수, 손실비용을 고려한 정비 계획 수립으로 최소 2.5억원/년(1호기, 40일 정비)의 관리적 손실을 줄일 수 있을 것으로 판단된다.

  • PDF

다공성 매질 개념을 이용한 응축기의 응축 열전달에 관한 수치 해석 (Numerical analysis of condensation in the condenser using the porous medium approach)

  • 제준호;최치웅;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2261-2266
    • /
    • 2007
  • In this study, the numerical analysis to estimate condensation heat and mass transfer of the condenser was carried out using the PMA (porous medium approach). In the PMA, the details of tube bundle in the condenser are replaced by the porous medium, and the flow resistance term is added in the momentum equation. In this regard, the PMA is quite helpful for the study of tube bundle in the large condenser. The pressure loss through tube bundle can be compensated by viscous and inertial momentum sink terms, which was validated numerically. Value of the pressure drop was compared to that of Butterworth correlation. Three dimensional analysis of condensation for McAllister condenser with the PMA was conducted using Fluent 6.2 and UDFs (use-defined functions). The result of condensation rate was analogous to previous results (experimental and numerical data).

  • PDF

자동차용 평행류 응축기의 열성능 모델링 (Thermodynamic Modeling of Parallel Flow Condenser for Automotive Air Conditioning System)

  • 김일겸;고재윤;박상록;임장순
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.771-779
    • /
    • 2001
  • In this study, a simulation program has been developed to predict the performance of a parallel flow condenser of an air conditioning system for an automobile. The well-known correlations for he heat transfer rates and the pressure drops are included in this model. It is fond that the numerical model can predict the heat transfer rate and the pressure drop accurately. As the condensing pressure increases of fixed air inlet temperature, the heat transfer rate increases and the pressure drop decreases. The effect of he degree of subcooling on the performance of the condenser is greater than that of the degree of super-heating because the ratio of the area occupied by he tow-phase refrigerant the total area is significantly affected by he degree of subcooling rather than the degree of superheating.

  • PDF

폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계 (A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System)

  • 배석정;허형석;박정상;이홍열;김찬중
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.