• Title/Summary/Keyword: Condenser Fin

Search Result 75, Processing Time 0.022 seconds

A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A (비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구)

  • Lee, Jeong-Kun;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

Separate type heat pipe performance comparison by the heat exchanger shapes (열교환기 형상에 따른 분리형 히트파이프 성능 비교)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.723-729
    • /
    • 2016
  • This study compared fin-tube and parallel-flow heat pipes for their sensible heat exchange rate, heat recovery amount, and air-side pressure drop. Tests were done with different refrigerant charging rates of 40-60% vol. and air flow rates of 300-1,400. The sensible heat exchange rate was highest for both types of heat pipes at a working fluid charge of 40% vol. and low flow rate. For the parallel-flow heat pipe, the 60% vol. charge is too high and results in a low sensible heat exchange rate. The reason is that the thicker liquid film of the tube wall deteriorates the heat transfer effect. Hence, the optimal charging rate is 40 to 50% vol. The evaporator heat pipe has a larger air-side pressure drop than the condenser section heat pipe. The reason is considered to be condensation water arising from the evaporator surface. Compared to the fin-tube heat pipe, the parallel-flow heat pipe showed better performance with a working fluid charging rate of 48%, volume of 41%, and an air-side pressure drop about 37%.

An Experimental Study on the Utilization of Heat Pipes for Solar Water Heaters (히이트파이프를 이용한 태양열 온수급탕 시스템에 관한 기초 실험 연구)

  • Chun, Won-Gee;Kang, Yong-Heack;Jeon, Myung-Seok;Kwak, Hee-Youl
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.3-11
    • /
    • 1995
  • This paper reports the performance of solar domestic hot water systems manufactured with heat pipes. A series of tests were conducted on a number of systems to elicit the most suitable configuration of the system for possible commercialization in Korea. The heat pipe is made with a copper tube and the respective length of the evaporator, adiabatic, and condenser sections are 1700mm, 100mm and 200mm. The evaportor section is finned with a copper plate to increase solar input for its proper operation as a heat pipe. Results show quite an interesting performance data stemming from the difference in working fluids, presence of wick, and other various design parameters associated with the collection and utilization of solar energy.

  • PDF

Air-side Heat Transfer and Pressure Drop of a Fin-and-Tube Heat Exchanger Under Low Temperature Condition (저온 조건에서 핀-관 열교환기의 공기측 열전달 및 압력손실)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.15-20
    • /
    • 2017
  • Currently, residential air conditioners operate as a heat pump during winter. In this case, the outdoor heat exchanger acts as an evaporator obtaining heat from cold air. On the other hand, it acts as a condenser during summer transferring heat to hot air. The outdoor temperature changes significantly from high to low. Generally, the air-side j and f factors are obtained at a standard outdoor temperature. Therefore, the applicability of the j and f factors under different outdoor conditions needs to be checked. In this study, tests were conducted for a two-row louver finned heat exchanger changing the outdoor temperature to subzero. The effects of the tube-side brine flow rate were also checked. The results showed that air-side j and f factors were essentially constant and independent of the outdoor temperature, suggesting that an extension of j and f factors obtained under standard conditions to a low outdoor temperature is acceptable. All j and f factors agreed within 9% and 3%, respectively. Tests were also conducted by changing the coolant flow rate. Both the j and f factors did not change according to the flow rate, suggesting that the tube-side heat transfer correlation is acceptable.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.