• Title/Summary/Keyword: Condensation regime

Search Result 32, Processing Time 0.023 seconds

Numerical Analysis for Evaluation of Ejection Capacity Relationship of Safety Valves in Pressure Regulating Station (II) - Flow Analysis and Required Effective Discharge Area of Safety Valve - (정압기지내의 안전밸브 분출용량 관계식 검증을 위한 유동해석 (II) - 안전밸브 유동 해석 및 필요분출면적 -)

  • Gwon, Hyuk-Rok;Roh, Kyung-Chul;Kim, Young-Seop;Lee, Seong-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • A safety valve has a valve mechanism for the automatic release of gas from piping system when the pressure exceeds preset limit cause of a defect of a pressure regulator, condensation of water in a pipe. Therefore, for the safety of pressure regulating station, it is essential to study the flow regime and characteristics of safety valve. This article presents the numerical analysis on the flow analysis, the ejection capacity and required effective discharge area of the safety valve that is established in pressure regulating station. Then, the results are compared and analyzed with domestic and foreign regulations such as API(America Petroleum Institute), EN(European Standard), and NF(Norme Francise). Moreover, the installation number of safety valve is considered by using domestic and foreign regulations and maximum reguired effective discharge area of safety valve.

  • PDF

Atomic Fountain towards a single atom trap (단원자 포획을 위한 원자분수)

  • H. S. Rawat;S. H. Kwon;Kim, J. B.;K. An
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.74-75
    • /
    • 2000
  • The past few decades have witnessed the development of very robust technique, known as magneto-optical trap(MOT), for cooling and trapping of neutral atoms using lasers and magnetic fields. This technique can easily produce cooled atoms to a temperature range of nano-kelvin $s^{(1)}$ . These laser cooled and trapped atoms have found applications in various fields, such as ultrahigh resolution spectroscopy, precision atomic clocks, very cold atomic collision physics, Bose-Einstein Condensation, the Atom laser, etc. Particularly, a few isolated atoms of very low temperature are needed in the cavity QED studies in the optical regime. One can obtain such atoms from a MOT using the atomic fountain technique. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT. And then launch them in the vertical (1, 1, 1) direction with respect to cooling beams, using moving molasses technique. Recently, this technique combined with the cavity-QED has opened an active area of basic research. This way atoms can be strongly coupled to the optical radiation in the cavity and leads to various new effects. Trapping of single atom after separating it from MOT in the high Q-optical cavity is actively initiated presentl $y^{(2.3)}$. This will help to sharpen our understanding of atom-photon interaction at quantum level and may lead to the development of single-atom laser. Our efforts to develop an $^{85}$ Rb-atomic fountain is in progress. (omitted)

  • PDF